
Functional Specification Swissbit TSE

SMAERS Firmware
Version 1.2.11

Swissbit

Dec 10, 2019

CONTENTS:

1 Introduction 1

1.1 Overview . 1

2 Physical Interface 2

3 File Based Interface 3

3.1 Working principle of the TOE . 3

3.2 TSE Status . 5

3.3 Reading TSE Data . 8

3.4 Exporting Data by reading from TSE_TAR.xxx . 9

3.5 Sending commands to the TOE . 9

4 Commands 13

4.1 User Authentication Commands . 13

4.1.1 Login User . 15

4.1.2 Logout User . 17

4.1.3 Unblock User . 18

4.1.4 Change PUK . 20

4.1.5 Change PIN . 21

4.2 Self Test Commands . 22

4.2.1 Run Self Test . 22

4.2.2 Register Client . 24

4.2.3 Deregister Client . 25

4.2.4 List Registered Clients . 26

4.3 Maintenance Commands . 27

4.3.1 Enable CTSS Interface . 27

4.3.2 Disable CTSS Interface . 28

4.3.3 Initialize TSE . 29

4.3.4 Decommission TSE . 30

4.3.5 Update Time . 31

4.3.6 TSE Firmware Update Transfer . 32

4.3.7 TSE Firmware Update Apply . 33

4.3.8 Enable Export If CSP Test Fails . 35

4.3.9 Disable Export If CSP Test Fails . 36

4.4 Utility Commands . 37

4.4.1 Fetch Command Response . 37

4.4.2 Get Last Transaction Response . 38

4.4.3 List Started Transactions . 39

4.4.4 Get Log Message Certificate . 41

4.4.5 TSE Flash Information . 43

4.5 Transaction Commands . 45

4.5.1 Data Import Initialize . 47

4.5.2 Data Import Transfer . 49

4.5.3 Data Import Finalize . 50

i

4.5.4 Data Import Rollback . 52

4.6 Export Commands . 53

4.6.1 Start Filtered Export . 53

4.6.2 Poll Filtered Export . 55

4.6.3 Abort Filtered Export . 57

4.6.4 Delete Exported Data . 58

4.6.5 Acknowledge Export . 59

5 Application Notes 60

5.1 Usage of TSE in RAW access . 60

5.2 Formatting the TSE . 60

5.3 Number of possible transactions and size of standard partition 61

5.4 Amount of possible signatures . 61

5.5 TSE full detection . 61

5.6 Host File System Caching Considerations . 61

5.7 Driver support for PC systems . 61

5.8 Initial PUK and PINs . 61

5.9 TSE Setup . 62

5.10 TSE Usage for Transactions . 62

5.11 Exceptional Error Cases . 62

5.12 Mapping of SFR . 65

Bibliography 71

ii

CHAPTER

ONE

INTRODUCTION

1.1 Overview

The Swissbit TSE (Technische Sicherheitseinrichtung) provides a way for developers of cash registers (host sys-

tem) to comply with the upcoming German fiscal laws becoming effective in 2020. The TSE comes in three form

factors: micro SD, SD, and USB and can be integrated into an existing cash register system by the use of basic file

operations. The Swissbit TSE contains a certified software (the TOE or the Swissbit TSE SMAERS Firmware).

This specification describes the use of the TSE at its external interfaces, independent of the form factor.

The TSE described in this specification complies with [BSI-TR-03153] [BSI-TR-03151] and [PP-SMAERS]. It

further utilizes the services of a certified security module that is compliant to [PPC-CSP-TS-Au].

The TSE is equipped with a digital certificate that can be used for registration at german tax authorities. Please

refer to [AGD] for more information on the process to register the TSE with the german tax authorities.

The TSE covers all the functionality that is required by [BSI-TR-03153] [BSI-TR-03151] and [PP-SMAERS] so

that the host does not have to care about secure storage or cryptographic processing. Specifically, the TSE provides

a way to securely store transactions in a consecutive and unmodifiable order combined with a digital signature for

proof of origin. In case the TSE storage gets filled up, all transactions can be backed up, deleted from the TSE

and new transactions can be recorded.

Note: Swissbit also develops a library in ANSI-C as recommended in [BSI-TR-03151] (which is not part of this

certification process) that wraps the communication to the TSE and provides an easy way to use the interface for

accessing the device. This software library is not described in this specification.

1

CHAPTER

TWO

PHYSICAL INTERFACE

The TSE is available in three different configurations:

• as a USB token

• as an SD card

• as a micro SD card

Figure Fig. 2.1. shows the physical boundaries of the TSE for the different configurations.

Fig. 2.1: Overview over all configurations of the TSE

The physical interface of the the USB token is implemented in accordance with [USB-Spec] while the SD card

configurations are implemented in accordance with [SD-Spec].

Note: The physical interface of the TSE is considered being a TSFI in the context of the Common Criteria

evaluation.

2

CHAPTER

THREE

FILE BASED INTERFACE

The TOE exposes all its services via a file based interface. To do so, the TOE provides a file system that is

formatted as FAT32 (please refer to [FAT32] for a complete specification). Some of the space of the file system is

pre-occupied to reserve space for the TOE transactions; this space is referred to as the TSE Store. The remaining

space is freely usable like on a standard storage device.

The TSE Store is protected against modification and deletion and can only be read after the host system has been

authorized. Please refer to Section 4.1 for more information. Also, the partitioning and file system of the TOE is

protected and cannot be changed during the life cycle of the TOE (please refer to Section 5.2 for details).

The overall architecture of the TSE is shown in Fig. 3.1.

Fig. 3.1: TSE Architecture

3.1 Working principle of the TOE

The overall working principle of the TOE bases on a set of files that are visible on the file system of the TOE after

it has been connected to a host system:

Fig. 3.2: TOE Special Files

TSE_COMM.DAT is a communication file, into which the host simply writes specially formatted data in order to

execute commands of the TOE. The response of the TOE can be retrieved by reading from the same file again.

Please refer to Commands for an overview over all commands that are offered by the TOE.

3

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

TSE_INFO.DAT contains status information and is read only. Please refer to TSE Status for more information.

The TSE_TAR.xxx files contain the transaction history. Because of file system limitations, the TSE Store is split

across multiple files each containing at most 1 GB of data.

Note: The TSE provides a set of commands to record data in form of transactions, which are then saved in the

area reserved for the TSE Store. Please refer to Section 4 for the relevant commands.

In case any of the special files gets unintentionally deleted, the file and its contents will be automatically restored

after the next power cycle.

3.1. Working principle of the TOE 4

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

3.2 TSE Status

Status information about the TOE can be retrieved by reading the file TSE_INFO.DAT which has a fixed size of

512 bytes.

The content of this file has the following structure:

Table 3.1: Data structure of TSE_INFO.DAT

Field Size Offset Comment

Customization Identifier 4 0 Customization Identifier

Firmware Type 4 4 Either “RLS” for production ready FW, “DEV” for devel-

opment FW that can be used by ECR vendors, or “TST” for

internal test revisions. The string is null-terminated, i.e. the

last byte is set to 0.

Firmware ID 4 8 If Firmware Type is “TST”, then this contains an internal id

that identifies the test build. Otherwise, this field is set to 0.

RFU (reserved for future

use)

8 12 RFU

TSE Capacity 4 20 Size of TSE Store in sectors.

Big endian.

TSE Current Size 4 24 Used size of TSE Store.

Only valid if the TSE Store is readable (see Section 3.3),

otherwise 0.

Big endian.

TSE Security 1 28

Bit 0: xxxxxxx1 Valid Time Set

Bit 1: xxxxxx1x Self Test Passed

Bit 2: xxxxx1xx CTSS Interface Active (requires

successful self test)

Bit 3: xxxx1xxx Export allowed if CSP test fails (see

Section 4.3.9)

Bit 4: xxx1xxxx RFU

Bit 5: xx1xxxxx RFU

Bit 6: x1xxxxxx RFU

Bit 7: 1xxxxxxx RFU

TSE Initialization State 1 29

0: Uninitialized

1: Initialized

2: Decommissioned

Data Import Initialized 1 30

0: No Data Import Initialized

1: Data Import Initialized, not yet finalized (see Section

4.5.1)

Special features 1 31

Bit 0: xxxxxxx1 Android Support. Always 1.

Bit 1: xxxxxx1x RFU

Bit 2: xxxxx1xx RFU

Bit 3: xxxx1xxx RFU

Continued on next page

3.2. TSE Status 5

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

Table 3.1 – continued from previous page

Field Size Offset Comment

Initial Password States 1 32

Bit 0: xxxxxxx1 Initial PUK changed

Bit 1: xxxxxx1x Initial Admin PIN changed

Bit 2: xxxxx1xx Initial TimeAdmin PIN changed

RFU 3 33 RFU

Time Until Next Selftest 4 36 Timeout in seconds after which the state selfTestRun will

automatically be made inactive. Please see Section 4.2.1

for details.

Started Transactions 4 40 Number of transactions that have not been finished, yet. If

this equals Max Started Transactions, no new transactions

can be started until at least one transaction has been fin-

ished.

Only valid if the TSE Store is readable (see Section 3.3),

otherwise 0.

Big Endian.

Max Started Transac-

tions

4 44 Maximum number of started transactions, i.e. amount of

transactions that can be started in parallel.

In the current revision, this is 512.

Big Endian.

Created Signatures 4 48 Amount of signatures that have been created with this TSE.

Please note that this value might exceed Max Signatures,

since Max Signatures is only a soft-cap and it might be pos-

sible to actually create more signatures.

Big Endian.

Max Signatures 4 52 Maximum amount of signatures that can be created with

this TSE.

Big Endian.

Registered Clients 4 56 Number of currently registered clients (see Section 4.2.2).

Big Endian.

Max Registered Clients 4 60 Maximum number of clients that can be registered.

In the current revision, this is 100.

Big Endian.

Certificate Expiration

Date

8 64 Timestamp (as seconds since Unix Epoch) after which the

certificate of this TSE will be invalid.

The timestamp will be interpreted as an unsigned number,

which means only dates after 1970 are supported.

Big Endian.

TAR Export Size 8 72 Size of the whole TSE Store in bytes, if exported (see Sec-

tion 3.4).

Only valid if the TSE Store is readable (see Section 3.3),

otherwise 0.

Big Endian.

TSE Hardware Version 4 80

2 Byte Major Version (Big Endian)

1 Byte Minor Version

1 Byte Patch Version

TSE Software Version 4 84

2 Byte Major Version (Big Endian)

1 Byte Minor Version

1 Byte Patch Version

Continued on next page

3.2. TSE Status 6

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

Table 3.1 – continued from previous page

Field Size Offset Comment

TSE Form Factor 4 88 Either “uSD”, “SD”, or “USB” as null-terminated string.

The remaining bytes are filled with zeros.

RFU 2 92 RFU

Max Time Synchroniza-

tion Delay

4 94 Interval (in seconds) after which command Update Time

must be sent.

Big endian.

MAX_UPDATE_DELAY 4 98 Interval (in seconds) after which a started transaction must

have received an update in case new data is available on the

cash register.

This is currently set to 45 seconds according to

MAX_UPDATE_DELAY from [BSI-TR-03116-5].

Big endian.

Last Header Block Index 4 102 Sector offset of last TSE entry. This allows to read the TSE

Store starting from the end.

Only valid if the TSE Store is readable (see Section 3.3),

otherwise 0.

Big Endian.

TSE Public Key Length 1 106 Usable length of TSE Public Key. Maximum length is 100

Bytes.

TSE Public Key 100 107 Public key that belongs to the private key generating sig-

natures, formatted according to [BSI-TR-03111] 3.2.1 Un-

compressed Encoding. Bytes after TSE Public Key Length

are filled with 0x0 and can be discarded.

This key can be used to verify all signatures created by the

TSE.

RFU 49 207 RFU

TSE Serial Number 32 256 Raw SHA-256 hash over the public key that belongs to the

private key generating signatures. This can be used as TSE

unique ID.

TSE Description 128 288 NULL terminated ASCII string containing a short descrip-

tion of the TSE.

RFU 96 416 RFU

Note: Please note that the combination of the fields TSE Hardware Version, TSE Software Version and TSE

Form Factor is required to uniquely identify the version of the TSE.

Certificate Expiration Date

After the signing certificate of the TSE has expired, new Log Messages can be signed and will be stored to the TSE

Store, but the command that leads to the signature creation will fail with 0x100A: Certificate expired. Please

note that the comparison for the expiration is done against the timestamp as found in the generated signature and

thus after the signature has been created, not before. That also means that for command Update Time, the new

timestamp will serve as reference value, not the old one.

Already stored Log Messages can still be exported, but the regular access control restrictions still apply (see

Section 3.3).

3.2. TSE Status 7

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

3.3 Reading TSE Data

All transaction logs are stored in the files TSE_TAR.xxx and can be read from there.

The TSE Store is filled with TSE Current Size number of 512 byte blocks. The maximum number of TSE blocks

can be up to TSE Capacity.

The TSE Store is a [BSI-TR-03153] compliant TAR archive containing each signed Log Message as a separate

file. Each file object included in the tar archive is preceded by a 512-byte header record. The file data is written

unaltered directly following the header, but is rounded up with zeros to a multiple of 512 bytes. The content of

the archived files complies with the ASN.1 structure defined by [BSI-TR-03151]. For reference, the header fields

used by this implementation are given in Table 3.2.

The data in the TSE Store is only readable if the CTSSInterfaceState is active, otherwise blocks filled with 0x00

will be returned.

There is however, one exception from this access control rule: If the self test of the TSE fails due to a malfunction

of the builtin security module, the CTSSInterfaceState will not become active. If in this situation the TSE Security

setting has bit 3 set, the TOE will allow to read the TSE Store if the CTSSInterfaceState has not been actively

disabled before (see Section 4.3.2). This allows data recovery in cases where the security module fails. It should

be noted however that this behavior must be activated in advance (see Section 4.3.8).

To summarize, reading the TSE Store is allowed if either the CTSSInterfaceState state is active or all of the

following conditions are met

• the TSE Security setting has bit 3 set by the use of the command described in Section 4.3.8

• the CTSSInterfaceState has NOT been disabled before by the use of the command described in Section 4.3.2

• all self tests of the the TSE have passed except those related to the CSP.

In all other cases, the TOE will only return zeros when reading the TSE Store.

Table 3.2: Data model of transaction data in TSE Store

Field Size Offset Comment

name 100 0 File name as NULL terminated ASCII string.

RFU 24 100

size 12 124 Size of the file following the header. The size is represented

by a decimal number encoded as an octal number in ASCII.

mtime 12 136 Timestamp when this Log Message has been created. It is

the ASCII representation of the octal value represented as

an integer number of seconds since January 1, 1970, 00:00

Coordinated Universal Time.

chksum 8 148 The chksum field is the ASCII representation of the octal

value of the simple sum of all bytes in the header block.

Each 8-bit byte in the header is added to an unsigned inte-

ger, initialized to zero, the precision of which shall be no

less than seventeen bits. When calculating the checksum,

the chksum field is treated as if it were all blanks.

typeflag 1 156 Always ASCII character ‘0’.

RFU 100 157

magic 6 257 Always the NULL terminated ASCII string ‘ustar’.

version 2 263 Always the ASCII string ‘00’ without terminating NULL

character.

RFU 247 265

3.3. Reading TSE Data 8

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

3.4 Exporting Data by reading from TSE_TAR.xxx

The most efficient (and recommended) way to perform an unfiltered export of all transaction information is to

simply read the TAR archive that is split across all TSE_TAR.xxx files and concatenate them to form the final

export. On a POSIX system (e.g. a typical Linux system), the concatenation of the tar files can be achieved by the

command

cat TSE_TAR.001 TSE_TAR.002 TSE_TAR.003 ... > TSE_TAR.tar

To reduce the number of bytes that have to be read, one can limit reading to TAR Export Size bytes (see Section

3.2), which is the size of the final TAR archive. Please note that this command only works if the file system cache

on the host system is not active (see Section 5.6).

Note: For a filtered export, please refer to Section 4.6.

3.5 Sending commands to the TOE

Apart from standard file operations, there are special commands available to use the special features pro-

vided by the TOE. Commands are sent to the TOE by writing the command data to the beginning of the file

TSE_COMM.DAT. The response is obtained by reading from the same location.

The handshake between host and TOE requires that every write to TSE_COMM.DAT needs to be followed by a

mandatory read from the same location before the next write will have an effect. In case two consecutive writes

are performed, the second write is discarded and also not acknowledged (by an incremented Write Index in the

command response) unless the response has been read after the first write.

The basic command structure is shown in Table 3.3. A command starts with the length of the entire command and

is followed by command specific data of at most 510 bytes. Together, this forms a command of exactly 512 bytes.

After sending a command, the response can be fetched immediately. In case the response is less than 512 bytes

long, the remaining bytes are filled with zeros to always create a response of exactly 512 bytes. The response

structure is given in Table 3.4. The complete list of commands of the TOE can be found in Section 4.

Please note that verification whether a command is in execution or already executed requires checking the Result

Code of the response with detection of the respective condition 0xFF, 0xFD or 0xFE. Also, the Write Index must

be checked before sending a command. This index must be incremented by exactly 1 in the command response

to ensure that the response corresponds to the command that was just sent and not to a previous command (or no

command at all after power cycling the device).

Table 3.3: Command Interface in TSE_COMM.DAT

Field Size Comment

Command Data Length 2 Length of Command Data.

Command Data N Command to execute. Maximum length is 510 Bytes.

3.4. Exporting Data by reading from TSE_TAR.xxx 9

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

Table 3.4: Command Response

Field Size Offset Comment

Write Index 4 0 Write Index for acknowledgement, starts with 0 after each

power cycle, incremented on a write to TSE_COMM.DAT.

This index therefore serves to acknowledge the previous

write and ensures the command response is exactly from

this write.

The handshake requires getting the transaction result after

each write to TSE_COMM.DAT.

Result Code 1 4
0xFF: Command completed and response available.

0xFE: Command not yet completed, continue to read

TSE_COMM.DAT until value is 0xFF or 0xFD.

0xFD: Command response available, please use command

Fetch Command Response to fetch it.

Command Response

Length

2 5 Length of command response.

Command Response Up to

505

7 Response Payload incl. status word (last two bytes). Valid

with Result Code 0xFF only.

Warning: In this context it is essential to highlight the difference between the Result Code and the actual

Command Response from the previous table. While the Result Code is a tool that only serves to control the

flow of commands and to provide feedback, whether a command actually finished yet, the Command Response

contains the actual feedback from a command.

The following image shows an example of a simple communication between the TOE and the client in order to

visualize the principles explained before.

ERS

ERS

TSE

TSE

Self Test

cmd: (Run Self Test, Client ID = "foo"), [00 06 40 00 03 66 6f 6f]

0xff -> response embedded, SW 0x1011, [00 00 00 02 ff 00 02 10 11]

User Login

cmd: (Login User, User ID == 1, PIN = "70255"), [00 09 20 00 01 05 37 30 32 35 35]

result code in TSE_comm.dat: 0xfe -> no response, keep polling, [00 00 00 04 fe 00 00]

result code in TSE_comm.dat: 0xfd -> response available, but must be fetched with command, [00 00 00 04 fd 00 00]

cmd: (Fetch Response), [00 02 83 00]

0xff -> response embedded, SW 0x0000 [00 00 00 04 ff 00 02 00 00]

Fig. 3.3: Example for a communication with the TOE

3.5. Sending commands to the TOE 10

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

Command Status Word

Each successful command execution leads to a Command Response, which contains at least 2 bytes of data. These

two bytes are located at the end of the Command Response and together are called the command’s status word

(SW).

A SW of 0x0000 means the command executed without errors. Any other SW indicates an error condition. All

possible SW are described in Table 3.5. The SW is part of every command’s response and the possible values

(other than 0x0000) are described for each command in the following sections.

Table 3.5: Status Words of commands

0x0000: Execution successful

0x1001: Unspecified, internal processing error

0x1002: Time not set

0x1004: No transaction in progress

0x1005: Invalid command syntax

0x1006: Not enough data written during transaction

0x1007: Invalid parameter

0x1008: Given transaction is not started

0x1009: Maximum parallel transactions reached

0x100A: Certificate expired

0x100C: No last transaction to fetch

0x100D: Wrong state, ongoing Data Import must be finished before this command is allowed

0x100E: Signatures exceeded

0x100F: Not authorized

0x1010: Maximum registered clients reached

0x1011: Client not registered

0x1012: Failed to delete, data not completely exported

0x1013: Client has unfinished transactions

0x1014: TSE contains unfinished transactions

0x1015: Wrong state, no command response to fetch

0x1016: Wrong state, ongoing Filtered Export must be finished before this command is allowed

0x1017: Operation failed, not enough remaining capacity in TSE Store

0x1050: Wrong state, changed PUK required

0x1051: Wrong state, changed PIN required

0x1053: Wrong state, active CTSS interface required

0x1054: Wrong state, self test must be run first

0x1055: Wrong state, passed self test required

0x1061: Firmware Update: Integrity check failed

0x1062: Firmware Update: Decryption failed

0x1064: Firmware Update: Wrong format

0x1065: Firmware Update: Internal error

0x1067: Firmware Update: downgrade prohibited

0x10FD: Wrong state, TSE already initialized

0x10FE: Wrong state, TSE decomissioned

0x10FF: Wrong state, TSE not initialized

0x11xx: Authentication failed, xx give the number of remaining retries

0x1201: PIN is blocked

0x1202: Given user is not authenticated

0x1300: Self test of FW failed

0x1310: Self test of CSP failed

0x1320: Self test of RNG failed

0x1400: Firmware Update: Base FW update error

0x1500: Firmware Update: FW Extension update error

0x1600: Firmware Update: CSP update error

0x2001: Filtered Export: no export in progress

Continued on next page

3.5. Sending commands to the TOE 11

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

Table 3.5 – continued from previous page

0x2002: Filtered Export: no new data, keep polling

0x2003: Filtered Export: no matching entries, export would be empty

0xF000: Command not found

0xFF00: Signature creation error

3.5. Sending commands to the TOE 12

CHAPTER

FOUR

COMMANDS

4.1 User Authentication Commands

The TOE manages different users, each having a PIN and a role.

PINs have a retry counter of 3. If a wrong PIN has been entered 3 times, the PIN will be blocked and must be

unblocked with the PUK, which belongs to the Admin user.

The PUK also has a retry counter of 3. If the wrong PUK has been entered 3 times, the PUK will be blocked. This

situation can not be recovered from. If the PINs are also blocked, the TOE can not be configured anymore and

must be replaced.

Please note that the access control model of the TOE bases on a role model rather than individual users. While this

command is actually used by users of the TOE (meaning entities external to the TOE), its primary purpose in the

sense of access control is to provide the ability to add a certain role to the current user context. The TOE maintains

a strict and static 1:1 relationship between the existing users and roles. More precisely, the role Admin only has

one user as a member, namely the user Admin and the role TimeAdmin only has one member, the user TimeAdmin.

While user Admin and role Admin are strictly speaking not identical, they can often be used interchangeably.

Some commands require a user with a specific role to be logged in in order to succeed. The following table

summarizes the existing roles and their associated permissions.

Table 4.1: User Permissions

Id Role Permissions

0 Unidentified User
• Login User

• Logout User

• Unblock User

• Change PUK

• Change PIN (but the user has to be logged in)

• Run Self Test

• Fetch Command Response

• Get Last Transaction Response

• List Started Transactions

• Get Log Message Certificate

• TSE Flash Information

• Data Import Initialize

• Data Import Finalize

• Data Import Rollback

• Start Filtered Export

• Poll Filtered Export

• Abort Filtered Export

• Acknowledge Export

1 Admin Full access to all commands.

2 Time Admin Unidentified User + Update Time

13

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

Beside the roles that are used to control the access of users to commands, the TOE also maintains a set of states

as listed in the following table. These states indicate characteristics of the current overall state of the TOE and are

used in some commands for access control purposes.

Table 4.2: States

State Description

selfTestRun This state is active if the self test has been executed at least once after booting the TOE

(see Section 4.2.1).

selfTestPassed This state is active if the self test of the TOE has been passed successfully. It is inactive

if the self test failed. If the state is inactive, the TOE is in the secure state as defined in

FPT_FLS.1 in [ST]. This state requires the state selfTestRun to be active.

CTSSInterfaceState This state is active if a) the self test of the TOE has been passed AND b) the CTSS

interface of the TOE has been enabled before with Enable CTSS Interface. Please note

that this state is immediately made inactive if either the self test fails or the Admin

disables the CTSS interface with Disable CTSS Interface.

TSEInitialized This state is active if a) the TOE has been initialized with Initialize TSE AND b) the

TOE has not been decommissioned with Decommission TSE, yet.

Note: The self test that is mentioned in the description of the CTSSInterfaceState includes the tests as described

in FPT_TST.1 as well as FPT_TEE.1.

Note: Enabling and Disabling the CTSS interface via Enable CTSS Interface and Disable CTSS Interface persists

over power cycles.

Note: [PP-SMAERS] defines two dedicated roles named CSP role and CTSS interface role. These roles have

no direct equivalent in form of a role in the TOE as they do not require user authentication. Instead, the CTSSIn-

terfaceState is the equivalent of the CTSS interface role and the selfTestPassed state is the equivalent of the CSP

role.

Whenever Login User, Logout User, or Unblock User is invoked, a Log Message will be generated and stored in

the TSE Store to log the result of the operation. For other User Authentication Commands, no log message will be

generated.

4.1. User Authentication Commands 14

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

4.1.1 Login User

Description

Authenticates users of the TOE based on their PIN.

After successful execution of this command by a user, the corresponding role will be added to the set of active

roles, which might allow to execute privileged commands. For example: if the command is called with the Admin’s

User ID and is successfully executed, the user will be allowed to execute commands that require the Admin role

afterwards. These changes to the role context are applied immediately after the command returns. If the command

fails, the roles that are associated with the current user context do not change. In this case, the command returns

[0x11xx: Authentication failed, xx give the number of remaining retries].

The current user context can be associated with multiple roles at the same time. If multiple users with different

roles are logged in, the effective privileges are the union of all logged in roles (e.g. if Admin and TimeAdmin are

logged in, the time can be set and administrative commands can be sent).

After a reboot of the TOE, all users are logged out again.

In case the provided PIN is wrong, the command will respond with [0x11xx: Authentication failed, xx give the

number of remaining retries] and the retry counter is decreased. If the retry counter is currently 1 and the wrong

PIN is used (thus the retry counter reaches 0), the number of remaining retries will be set to 0 and the SW will be

0x1100. Afterwards, both an authentication with and without a valid PIN will return [0x1201: PIN is blocked].

In order to login the user again, the user must be unblocked with command Unblock User.

This command causes a Log Message to be signed and thus can only be executed if the CSP is still operational.

Note: The initial PINs are device dependent and can be calculated as described in Initial PUK and PINs.

Note: Before any user can be logged in, the initial PUK must have been changed (see Section 4.1.4), otherwise

the command will fail with [0x1050: Wrong state, changed PUK required].

Permissions

• This command requires the state selfTestRun to be active (see Section 4.1).

Command structure and parameters

Table 4.3: Command Data: Login User

Field Size Offset Value Comment

Command 2 0 20 00

User Id 1 2 Id as given in Table 4.1 (except

0)

User to log in as.

PIN Length 1 3 Must be 5.

PIN 5 4 Byte array.

Response

The response does not carry any data except of the SW. In case of success, the SW is [0x0000: Execution

successful], otherwise one of the following error codes is returned.

4.1. User Authentication Commands 15

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

Error Codes

Table 4.4: Error Codes

0x1001: Unspecified, internal processing error

0x1005: Invalid command syntax

0x1054: Wrong state, self test must be run first

0x100D: Wrong state, ongoing Data Import must be finished before this command is allowed

0x1016: Wrong state, ongoing Filtered Export must be finished before this command is allowed

0x1007: Invalid parameter

0x1050: Wrong state, changed PUK required

0x1201: PIN is blocked

0x11xx: Authentication failed, xx give the number of remaining retries

0x100A: Certificate expired

0x1017: Operation failed, not enough remaining capacity in TSE Store

0xFF00: Signature creation error

4.1. User Authentication Commands 16

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

4.1.2 Logout User

Description

Logs out the given user. The user must be logged in, otherwise the command will fail with [0x1202: Given user

is not authenticated].

On successful execution, the user’s role will be immediately removed from the active roles and privileged com-

mands might not be executable anymore. Please refer to Login User for more details about the relationship

between users and their roles.

This command causes a Log Message to be signed and thus can only be executed if the CSP is still operational.

Permissions

• This command requires the state selfTestRun to be active (see Section 4.1).

Command structure and parameters

Table 4.5: Command Data: Logout User

Field Size Offset Value Comment

Command 2 0 21 00

User Id 1 2 Id as given in Table 4.1 User to log out.

Response

The response does not carry any data except of the SW. In case of success, the SW is [0x0000: Execution

successful], otherwise one of the following error codes is returned.

Error Codes

Table 4.6: Error Codes

0x1001: Unspecified, internal processing error

0x1005: Invalid command syntax

0x1054: Wrong state, self test must be run first

0x100D: Wrong state, ongoing Data Import must be finished before this command is allowed

0x1016: Wrong state, ongoing Filtered Export must be finished before this command is allowed

0x1202: Given user is not authenticated

0x100A: Certificate expired

0x1017: Operation failed, not enough remaining capacity in TSE Store

0xFF00: Signature creation error

4.1. User Authentication Commands 17

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

4.1.3 Unblock User

Description

This command serves two distinct purposes: On the one hand, the command can be used to unblock a user that has

been blocked due to too many unsuccessful authentication attempts. On the other hand, the command can be used

to change the PIN of a user. Therefore, it can be used to recover the credentials of a user in case of a forgotten

PIN.

As both commands are administrative commands, the PUK must be provided.

The new PIN must be different from the previous one (even when just unblocking the user), otherwise the com-

mand will fail with [0x1007: Invalid parameter].

The PUK has an associated retry counter. In case the provided PUK is wrong, the response SW is [0x11xx:

Authentication failed, xx give the number of remaining retries] and the retry counter is decreased. If the retry

counter is currently 1 and the wrong PUK is used (thus the retry counter reaches 0), the number of remaining

retries will be set to 0 and the SW will be 0x1100. Afterwards, both an authentication with and without a valid

PUK will return [0x1201: PUK is blocked]. As a blocked PUK can not be recovered from, it is recommended

to export all data and decommission the TOE. Afterwards, a new TSE should be used.

This command causes a Log Message to be signed and thus can only be executed if the CSP is still operational.

Note: Before this command can be executed, the initial PIN of the user must have been changed (see Section

4.1.5), otherwise the command will fail with [0x1051: Wrong state, changed PIN required].

Permissions

• This command requires the state selfTestRun to be active (see Section 4.1).

Command structure and parameters

Table 4.7: Command Data: Unblock User

Field Size Offset Value Comment

Command 2 0 22 00

User Id 1 2 Id as given in Table 4.1 (except

0)

User to unblock.

PUK Length 1 3 Must be 6.

PUK 6 4 Byte array.

New PIN Length 1 10 Must be 5.

New PIN 5 11 Byte array.

Response

The response does not carry any data except of the SW. In case of success, the SW is [0x0000: Execution

successful], otherwise one of the following error codes is returned.

4.1. User Authentication Commands 18

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

Error Codes

Table 4.8: Error Codes

0x1001: Unspecified, internal processing error

0x1005: Invalid command syntax

0x1054: Wrong state, self test must be run first

0x100D: Wrong state, ongoing Data Import must be finished before this command is allowed

0x1016: Wrong state, ongoing Filtered Export must be finished before this command is allowed

0x1007: Invalid parameter

0x1051: Wrong state, changed PIN required

0x1201: PUK is blocked

0x11xx: Authentication failed, xx give the number of remaining retries

0x100A: Certificate expired

0x1017: Operation failed, not enough remaining capacity in TSE Store

0xFF00: Signature creation error

4.1. User Authentication Commands 19

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

4.1.4 Change PUK

Description

This command can be used to change the Admin PUK.

The new PUK must be different from the previous PUK, otherwise the command fails with [0x1007: Invalid

parameter].

The PUK has an associated retry counter. In case the provided PUK is wrong, the response SW is [0x11xx:

Authentication failed, xx give the number of remaining retries] and the retry counter is decreased. If the retry

counter is currently 1 and the wrong PUK is used (thus the retry counter reaches 0), the number of remaining

retries will be set to 0 and the SW will be 0x1100. Afterwards, both an authentication with and without a valid

PUK will return [0x1201: PUK is blocked]. As a blocked PUK can not be recovered from, it is recommended

to export all data and decommission the TOE. Afterwards, a new TSE should be used.

Note: The PUK can be changed even if the user Admin is not logged in, which means that the Admin PIN is not

required to change the PUK.

Note: The initial PUK is device dependent and can be calculated as described in Initial PUK and PINs.

Permissions

• This command requires the state selfTestRun to be active (see Section 4.1).

Command structure and parameters

Table 4.9: Command Data: Change PUK

Field Size Offset Value Comment

Command 2 0 23 00

Current PUK

Length

1 2 Must be 6.

Current PUK 6 3 Byte array.

New PUK Length 1 9 Must be 6.

New PUK 6 10 Byte array.

Response

The response does not carry any data except of the SW. In case of success, the SW is [0x0000: Execution

successful], otherwise one of the following error codes is returned.

Error Codes

Table 4.10: Error Codes

0x1001: Unspecified, internal processing error

0x1005: Invalid command syntax

0x1054: Wrong state, self test must be run first

0x100D: Wrong state, ongoing Data Import must be finished before this command is allowed

0x1016: Wrong state, ongoing Filtered Export must be finished before this command is allowed

0x1007: Invalid parameter

0x1201: PUK is blocked

0x11xx: Authentication failed, xx give the number of remaining retries

4.1. User Authentication Commands 20

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

4.1.5 Change PIN

Description

Changes the PIN of the given user. The user must have been logged in before with command Login User, otherwise

the command will fail with [0x1202: Given user is not authenticated].

In order to change the PIN, the current PIN must be provided as well as the new PIN, which must be different

from the current PIN (otherwise the command fails with [0x1007: Invalid parameter]).

The PIN has an associated retry counter. In case the provided PIN is wrong, the response SW is [0x11xx:

Authentication failed, xx give the number of remaining retries] and the retry counter is decreased. If the retry

counter is currently 1 and the wrong PIN is used (thus the retry counter reaches 0), the number of remaining

retries will be set to 0 and the SW will be 0x1100. Afterwards, a PIN change with and without a valid PIN will

return [0x1201: PIN is blocked].

If users were blocked by this command, they can be unblocked with command Unblock User.

Permissions

• This command requires the state selfTestRun to be active (see Section 4.1).

Command structure and parameters

Table 4.11: Command Data: Change PIN

Field Size Offset Value Comment

Command 2 0 24 00

User Id 1 2 Id as given in Table 4.1 User to change the PIN for.

Current PIN

Length

1 3 Must be 5.

Current PIN 5 4 Byte array.

New PIN Length 1 9 Must be 5.

New PIN 5 10 Byte array.

Response

The response does not carry any data except of the SW. In case of success, the SW is [0x0000: Execution

successful], otherwise one of the following error codes is returned.

Error Codes

Table 4.12: Error Codes

0x1001: Unspecified, internal processing error

0x1005: Invalid command syntax

0x1054: Wrong state, self test must be run first

0x100D: Wrong state, ongoing Data Import must be finished before this command is allowed

0x1016: Wrong state, ongoing Filtered Export must be finished before this command is allowed

0x1007: Invalid parameter

0x1202: Given user is not authenticated

0x1201: PIN is blocked

0x11xx: Authentication failed, xx give the number of remaining retries

4.1. User Authentication Commands 21

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

4.2 Self Test Commands

4.2.1 Run Self Test

Description

After each power cycle, the TOE runs a self test to ensure proper operation of its internal modules. The self test

consists of three parts:

1. Test of the TOE itself (e.g. data consistency). This part of the self test includes a health test of the random

number generator. If this test fails, the command fails with [0x1300: Self test of FW failed] or with

[0x1320: Self test of RNG failed] in the case that the source of the error is the RNG.

2. Test of the CSP. If this test fails, the command fails with [0x1310: Self test of CSP failed].

3. Test of the ERS. If this test fails, the command fails with [0x1011: Client not registered].

Since the self test depends on the Client ID provided by the ERS, the self test can only be completed successfully

by issuing this command and thus must be run as first command after the TOE boots, otherwise no other command

can be executed. The client must have been registered before with command Register Client, otherwise this

command will fail with [0x1011: Client not registered].

The self test can be repeated whenever it is desired by the ERS, but it must be run at least once every 25 hours.

Otherwise, the TOE will set the state selfTestRun to inactive, which makes all future commands fail until the self

test is run successfully again. The time until the selfTestRun state will be made inactive can be retrieved as Time

Until Next Selftest from TSE Status.

The self test is a potentially long running operation that might take up to 60 seconds to complete.

Please note that the CSP gets power cycled during the self test and thus the internal time will be set back to zero

and must be set again after a successful self test.

Permissions

None.

Command structure and parameters

Table 4.13: Command Data: Run Self Test

Field Size Offset Value Comment

Command 2 0 40 00

Client ID Length 1 2 L1 Maximum length is 30 bytes.

Client ID L1 3 ASCII string representing the

unique serial number of the

client.

Response

The response does not carry any data except of the SW. In case of success, the SW is [0x0000: Execution

successful], otherwise one of the following error codes is returned.

4.2. Self Test Commands 22

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

Error Codes

Table 4.14: Error Codes

0x1001: Unspecified, internal processing error

0x1005: Invalid command syntax

0x100D: Wrong state, ongoing Data Import must be finished before this command is allowed

0x1016: Wrong state, ongoing Filtered Export must be finished before this command is allowed

0x1007: Invalid parameter

0x1011: Client not registered

0x1300: Self test of FW failed

0x1310: Self test of CSP failed

0x1320: Self test of RNG failed

4.2. Self Test Commands 23

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

4.2.2 Register Client

Description

Registers a client (i.e. an ERS) as a valid system for self tests and transactions. A client is identified by its ID,

which shall be a unique string (e.g. its serial number). If the same client is already registered, the command will

be successful, but the client will not be registered twice.

The amount of currently and maximally registered clients can be obtained from TSE Status. If this number has been

reached and the command is executed again, it will fail with [0x1010: Maximum registered clients reached].

Note: Before this command can be executed, the initial PIN for each user must have been changed (see Section

4.1.5), otherwise the command will fail with [0x1051: Wrong state, changed PIN required].

Permissions

• This command requires the state selfTestRun to be active (see Section 4.1).

• This command requires the user Admin to be logged in (see Section 4.1).

Command structure and parameters

Table 4.15: Command Data: Register Client

Field Size Offset Value Comment

Command 2 0 41 00

Client ID Length 1 2 L1 Maximum length is 30 bytes.

Client ID L1 3 ASCII string representing the

unique serial number of the

client. The string must be rep-

resentable as an ASN.1 Print-

ableString, which restricts the

allowed characters to the fol-

lowing: A-Za-z0-9'()+,

-./:=? and the space charac-

ter.

Response

The response does not carry any data except of the SW. In case of success, the SW is [0x0000: Execution

successful], otherwise one of the following error codes is returned.

Error Codes

Table 4.16: Error Codes

0x1001: Unspecified, internal processing error

0x1005: Invalid command syntax

0x1054: Wrong state, self test must be run first

0x100D: Wrong state, ongoing Data Import must be finished before this command is allowed

0x1016: Wrong state, ongoing Filtered Export must be finished before this command is allowed

0x100F: Not authorized

0x1007: Invalid parameter

0x1051: Wrong state, changed PIN required

0x1010: Maximum registered clients reached

4.2. Self Test Commands 24

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

4.2.3 Deregister Client

Description

Removes a client from the list of authorized clients.

In case the client is not registered, this command will fail with [0x1011: Client not registered].

Before a client can be deregistered, all transactions belonging to that client must be finished first, otherwise the

command will fail with [0x1013: Client has unfinished transactions]. An unfinished transaction always belongs

to the client that updated it most recently (or started the transaction in case it was never updated at all).

Please be aware that for passing the self test (see Section 4.2.1) at least one client must be registered.

Permissions

• This command requires the state selfTestRun to be active (see Section 4.1).

• This command requires the user Admin to be logged in (see Section 4.1).

Command structure and parameters

Table 4.17: Command Data: Deregister Client

Field Size Offset Value Comment

Command 2 0 42 00

Client ID Length 1 2 L1 Maximum length is 30 bytes.

Client ID L1 3 ASCII string representing the

unique serial number of the

client.

Response

The response does not carry any data except of the SW. In case of success, the SW is [0x0000: Execution

successful], otherwise one of the following error codes is returned.

Error Codes

Table 4.18: Error Codes

0x1001: Unspecified, internal processing error

0x1005: Invalid command syntax

0x1054: Wrong state, self test must be run first

0x100D: Wrong state, ongoing Data Import must be finished before this command is allowed

0x1016: Wrong state, ongoing Filtered Export must be finished before this command is allowed

0x100F: Not authorized

0x1007: Invalid parameter

0x1011: Client not registered

0x1013: Client has unfinished transactions

4.2. Self Test Commands 25

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

4.2.4 List Registered Clients

Description

Lists all registered clients in chunks of 16 clients.

By providing a non-zero value for Client Offset, this amount of clients can be skipped from the beginning of the

returned list. For example, a value of 0 will return the first 16 registered clients and a value of 3 will return the 4th

to 19th registered clients.

The Amount field in the response gives the amount of client IDs that are stored in the response. If this is smaller

than 16, then there are no further clients registered.

Permissions

• This command requires the state selfTestRun to be active (see Section 4.1).

• This command requires the user Admin to be logged in (see Section 4.1).

Command structure and parameters

Table 4.19: Command Data: List Registered Clients

Field Size Offset Value Comment

Command 2 0 43 00

Client Offset 4 2 The amount of registered

clients to skip.

Response

In case of success, the SW is [0x0000: Execution successful] and the following additional data is returned,

otherwise an error is returned (see next section).

Table 4.20: Response Data: List Registered Clients

Field Size Offset Value Comment

Amount 1 0 n Amount of clients in this re-

sponse. 0 <= n <= 16.

Client ID 1 31 1 NULL terminated ASCII

string of 1st registered client

ID.

Client ID 2 31 32 NULL terminated ASCII

string of 2nd registered client

ID.

.

Client ID 16 31 466 NULL terminated ASCII

string of 16th registered client

ID.

Error Codes

Table 4.21: Error Codes

0x1001: Unspecified, internal processing error

0x1005: Invalid command syntax

0x1054: Wrong state, self test must be run first

0x100D: Wrong state, ongoing Data Import must be finished before this command is allowed

0x1016: Wrong state, ongoing Filtered Export must be finished before this command is allowed

0x100F: Not authorized

4.2. Self Test Commands 26

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

4.3 Maintenance Commands

4.3.1 Enable CTSS Interface

Description

This command can be used to enable the CTSS Interface. An enabled CTSS interface is a pre-requisite for many

other commands that are described in this specification.

The current status of the CTSS interface can be obtained by reading bit 2 from the TSE Security value from TSE

Status.

Note: The CTSS interface refers to the logical interface that operates on top of the file based interface as described

in File Based Interface. It can also be referred to as ERS interface.

By default, the CTSS interface is disabled, which means that no transactions can be performed and no data can be

read from the TSE Store.

The setting that is changed by this command is persisted across power cycles.

Permissions

• This command requires the state selfTestPassed to be active (see Section 4.1).

• This command requires the user Admin to be logged in (see Section 4.1).

Command structure and parameters

Table 4.22: Command Data: Enable CTSS Interface

Field Size Offset Value Comment

Command 2 0 60 00

Data <empty>

Response

The response does not carry any data except of the SW. In case of success, the SW is [0x0000: Execution

successful], otherwise one of the following error codes is returned.

Error Codes

Table 4.23: Error Codes

0x1001: Unspecified, internal processing error

0x1005: Invalid command syntax

0x1054: Wrong state, self test must be run first

0x1055: Wrong state, passed self test required

0x100D: Wrong state, ongoing Data Import must be finished before this command is allowed

0x1016: Wrong state, ongoing Filtered Export must be finished before this command is allowed

0x100F: Not authorized

4.3. Maintenance Commands 27

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

4.3.2 Disable CTSS Interface

Description

This command can be used to disable the CTSS Interface. An enabled CTSS interface is a pre-requisite for many

other commands that are described in this specification.

The current status of the CTSS interface can be obtained by reading bit 2 from the TSE Security value from TSE

Status.

After disabling the interface, commands that require the CTSSInterfaceState to be active can not be executed

anymore. Thus, when sending the TSE to maintenance, it is recommended to disable the CTSS interface in order

to prevent reading the recorded transactions.

The setting that is changed by this command is persisted across power cycles.

Permissions

• This command requires the state selfTestPassed to be active (see Section 4.1).

• This command requires the user Admin to be logged in (see Section 4.1).

Command structure and parameters

Table 4.24: Command Data: Disable CTSS Interface

Field Size Offset Value Comment

Command 2 0 61 00

Data <empty>

Response

The response does not carry any data except of the SW. In case of success, the SW is [0x0000: Execution

successful], otherwise one of the following error codes is returned.

Error Codes

Table 4.25: Error Codes

0x1001: Unspecified, internal processing error

0x1005: Invalid command syntax

0x1054: Wrong state, self test must be run first

0x1055: Wrong state, passed self test required

0x100D: Wrong state, ongoing Data Import must be finished before this command is allowed

0x1016: Wrong state, ongoing Filtered Export must be finished before this command is allowed

0x100F: Not authorized

4.3. Maintenance Commands 28

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

4.3.3 Initialize TSE

Description

Before the TOE can be used for transactions, it must be initialized with this command.

By initializing the TOE, the user takes ownership of the TOE and activates the TSEInitialized state (see Section

4.1), which allows commands that need this state to be active to be executed.

Note: This command can only be issued once during the life time of the TOE. If the command is called again

afterwards, it will fail with [0x10FD: Wrong state, TSE already initialized].

Permissions

• This command requires the state CTSSInterfaceState to be active (see Section 4.1).

• This command requires the user Admin to be logged in (see Section 4.1).

Command structure and parameters

Table 4.26: Command Data: Initialize TSE

Field Size Offset Value Comment

Command 2 0 70 00

Data <empty>

Response

The response does not carry any data except of the SW. In case of success, the SW is [0x0000: Execution

successful], otherwise one of the following error codes is returned.

Error Codes

Table 4.27: Error Codes

0x1001: Unspecified, internal processing error

0x1005: Invalid command syntax

0x1054: Wrong state, self test must be run first

0x1055: Wrong state, passed self test required

0x100D: Wrong state, ongoing Data Import must be finished before this command is allowed

0x1016: Wrong state, ongoing Filtered Export must be finished before this command is allowed

0x1053: Wrong state, active CTSS interface required

0x10FD: Wrong state, TSE already initialized

0x10FE: Wrong state, TSE decomissioned

0x100F: Not authorized

0x100A: Certificate expired

0x1017: Operation failed, not enough remaining capacity in TSE Store

0xFF00: Signature creation error

4.3. Maintenance Commands 29

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

4.3.4 Decommission TSE

Description

When the TOE should not be used anymore, it must be decommissioned with this command.

Successful execution of this command will permanently remove the ability to store new transactions in the TOE

as the CSP can no longer perform signatures afterwards. After issuing this command, the TSEInitialized state

(see Section 4.1) will be deactivated permanently and command Initialize TSE will be blocked to prevent re-

initialization of the TSE.

Decommissioning is only allowed if there are no unfinished transactions, otherwise the command will fail with

[0x1014: TSE contains unfinished transactions].

Permissions

• This command requires the state CTSSInterfaceState to be active (see Section 4.1).

• This command requires the state TSEInitialized to be active (see Section 4.1).

• This command requires the user Admin to be logged in (see Section 4.1).

• The time must have been set before (see Section 4.3.5).

Command structure and parameters

Table 4.28: Command Data: Decommission TSE

Field Size Offset Value Comment

Command 2 0 71 00

Data <empty>

Response

The response does not carry any data except of the SW. In case of success, the SW is [0x0000: Execution

successful], otherwise one of the following error codes is returned.

Error Codes

Table 4.29: Error Codes

0x1001: Unspecified, internal processing error

0x1005: Invalid command syntax

0x1054: Wrong state, self test must be run first

0x1055: Wrong state, passed self test required

0x100D: Wrong state, ongoing Data Import must be finished before this command is allowed

0x1016: Wrong state, ongoing Filtered Export must be finished before this command is allowed

0x1053: Wrong state, active CTSS interface required

0x10FF: Wrong state, TSE not initialized

0x10FE: Wrong state, TSE decomissioned

0x1002: Time not set

0x100F: Not authorized

0x1014: TSE contains unfinished transactions

0x100A: Certificate expired

0x1017: Operation failed, not enough remaining capacity in TSE Store

0xFF00: Signature creation error

4.3. Maintenance Commands 30

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

4.3.5 Update Time

Description

After each power cycle, the TSE Store is locked and no transactions are possible until the time of the ERS has

been synchronized with the time of the TOE using this command.

The TOE will forward the timestamp to its CSP and will use this time to properly timestamp Log Messages.

Depending on the accuracy of the CSP’s internal clock, this command must also be called regularly to keep

the host and TOE time synchronized. How often the time must be synchronized is announced in TSE Status.

Applications should take care to not synchronize the time too frequently as this negatively effects the endurance

of the CSP. It is thus recommended to synchronize the time as close as possible to the interval that is announced

in TSE Status.

Permissions

• This command requires the state CTSSInterfaceState to be active (see Section 4.1).

• This command requires the state TSEInitialized to be active (see Section 4.1).

• This command requires the user Admin or Time Admin to be logged in (see Section 4.1).

Command structure and parameters

Table 4.30: Command Data: Update Time

Field Size Offset Value Comment

Command 2 0 80 00

Timestamp 8 2 Timestamp as seconds since

Unix Epoch. The timestamp

will be interpreted as an un-

signed number, which means

only dates after 1970 are sup-

ported.

Big Endian.

Response

The response does not carry any data except of the SW. In case of success, the SW is [0x0000: Execution

successful], otherwise one of the following error codes is returned.

Error Codes

Table 4.31: Error Codes

0x1001: Unspecified, internal processing error

0x1005: Invalid command syntax

0x1054: Wrong state, self test must be run first

0x1055: Wrong state, passed self test required

0x100D: Wrong state, ongoing Data Import must be finished before this command is allowed

0x1016: Wrong state, ongoing Filtered Export must be finished before this command is allowed

0x1053: Wrong state, active CTSS interface required

0x10FF: Wrong state, TSE not initialized

0x10FE: Wrong state, TSE decomissioned

0x100F: Not authorized

0x100A: Certificate expired

0x1017: Operation failed, not enough remaining capacity in TSE Store

0xFF00: Signature creation error

4.3. Maintenance Commands 31

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

4.3.6 TSE Firmware Update Transfer

Description

Transfers a firmware update package to the TOE.

Since the firmware package can be quite large, it must be transferred in multiple chunks. The first chunk will be

transmitted with a Chunk Offset set to 0 and an arbitrary Chunk Length L1. The next chunk will be transmitted

with a Chunk Offset equal to L1 and a Chunk Length of L2. Another chunk will be transferred with a Chunk Offset

of L1 + L2 and a Chunk Length of L3 and so on until the final chunk has been transferred. To then apply the

update, call command TSE Firmware Update Apply.

If the Chunk Offset is bigger than the reserved space for a firmware update package, this command will fail with

[0x1007: Invalid parameter]. Additionally, Chunk Offset and Chunk Length must be multiples of 16, otherwise

this command will fail with [0x1007: Invalid parameter].

Permissions

• This command requires the state selfTestPassed to be active (see Section 4.1).

• This command requires the user Admin to be logged in (see Section 4.1).

Command structure and parameters

Table 4.32: Command Data: TSE Firmware Update Transfer

Field Size Offset Value Comment

Command 2 0 50 00

Chunk Offset 4 2 Offset in the firmware package

where Chunk Data is stored.

Big Endian.

Chunk Length 2 6 L1 Size of the current chunk in

bytes.

Big Endian.

Chunk Data L1 8 Raw data of the current chunk.

Response

The response does not carry any data except of the SW. In case of success, the SW is [0x0000: Execution

successful], otherwise one of the following error codes is returned.

Error Codes

Table 4.33: Error Codes

0x1001: Unspecified, internal processing error

0x1005: Invalid command syntax

0x1054: Wrong state, self test must be run first

0x1055: Wrong state, passed self test required

0x100D: Wrong state, ongoing Data Import must be finished before this command is allowed

0x1016: Wrong state, ongoing Filtered Export must be finished before this command is allowed

0x100F: Not authorized

0x1007: Invalid parameter

4.3. Maintenance Commands 32

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

4.3.7 TSE Firmware Update Apply

Description

Applies a firmware update that was previously transferred to the TOE with command TSE Firmware Update

Transfer. The firmware will be checked by the CSP for authenticity and integrity before being applied.

Please note that this is a long running operation, which – depending on the size of the firmware update – might

take several minutes to complete. It must be ensured that there is no power loss while applying the firmware

update, as this might brick the device and make it unusable. Therefore it is recommended to export all data before

applying a firmware update. However, only the last seconds of the firmware update process are critical and must

not be interrupted, losing power anywhere prior does not affect the TOE at all.

In case the firmware update succeeds, the TSE automatically performs a power cycle. In that case the Write Index

in the response will be set to 0. Since this situation can not be distinguished from a power cycle that happened

randomly during the update process, the ERS should read the currently installed TSE Software Version (see Section

3.2) before applying the update and read it again after the update has been completed. If the new value is numerical

bigger than the old value, the update was successfully applied.

If the Firmware Update Package Size is 0 or not a multiple of 512, this command will fail with [0x1007:

Invalid parameter]. If the decrypted firmware package can not be parsed, this command will fail with [0x1064:

Firmware Update: Wrong format]. If the firmware package to be installed does not have a higher version number

as the one currently installed, this command will fail with [0x1067: Firmware Update: downgrade prohibited]

to prevent downgrading the TOE to an earlier version.

Permissions

• This command requires the state selfTestPassed to be active (see Section 4.1).

• This command requires the user Admin to be logged in (see Section 4.1).

Command structure and parameters

Table 4.34: Command Data: TSE Firmware Update Apply

Field Size Offset Value Comment

Command 2 0 51 00

Firmware Update

Package Size

4 2 Total size of the firmware

package that has been trans-

ferred with TSE Firmware Up-

date Transfer.

Big Endian.

Response

The response does not carry any data except of the SW. In case of success, the SW is [0x0000: Execution

successful], otherwise one of the following error codes is returned.

4.3. Maintenance Commands 33

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

Error Codes

Table 4.35: Error Codes

0x1001: Unspecified, internal processing error

0x1005: Invalid command syntax

0x1054: Wrong state, self test must be run first

0x1055: Wrong state, passed self test required

0x100D: Wrong state, ongoing Data Import must be finished before this command is allowed

0x1016: Wrong state, ongoing Filtered Export must be finished before this command is allowed

0x100F: Not authorized

0x1007: Invalid parameter

0x1061: Firmware Update: Integrity check failed

0x1062: Firmware Update: Decryption failed

0x1064: Firmware Update: Wrong format

0x1065: Firmware Update: Internal error

0x1067: Firmware Update: downgrade prohibited

0x1400: Firmware Update: Base FW update error

0x1500: Firmware Update: FW Extension update error

0x1600: Firmware Update: CSP update error

4.3. Maintenance Commands 34

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

4.3.8 Enable Export If CSP Test Fails

Description

The TOE allows to determine the behavior of the TOE with respect to the export of data if the CSP test fails during

the self test.

By default, no data can be exported anymore if the CSP test fails due to a broken security module. To allow data

to be exportable if the CSP test fails, this command can be used. Please note that this command will only allow

to do a complete export (see Section 3.3) of the tar archive; the export commands given in Section 4.6 will still

be disabled. Also, all commands of the TOE that require a successful self test for their execution will still be

inaccessible.

This command can only be used while the CSP self test is still passing. As soon as the test fails, it is too late to

change this setting and this command will fail.

This setting is persisted across power cycles.

Permissions

• This command requires the state selfTestPassed to be active (see Section 4.1).

• This command requires the user Admin to be logged in (see Section 4.1).

Command structure and parameters

Table 4.36: Command Data: Enable Export If CSP Test Fails

Field Size Offset Value Comment

Command 2 0 62 01

Data <empty>

Response

The response does not carry any data except of the SW. In case of success, the SW is [0x0000: Execution

successful], otherwise one of the following error codes is returned.

Error Codes

Table 4.37: Error Codes

0x1001: Unspecified, internal processing error

0x1005: Invalid command syntax

0x1054: Wrong state, self test must be run first

0x1055: Wrong state, passed self test required

0x100D: Wrong state, ongoing Data Import must be finished before this command is allowed

0x1016: Wrong state, ongoing Filtered Export must be finished before this command is allowed

0x100F: Not authorized

4.3. Maintenance Commands 35

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

4.3.9 Disable Export If CSP Test Fails

Description

The TOE allows to determine the behavior of the TOE with respect to the export of data if the CSP test fails during

the self test.

To disable the functionality of export and prevent any data from being exported if the CSP test fails, use this

command. Please note that in case of a broken CSP, the data on the TOE is then lost and can not be recovered.

This is the factory default behavior.

This setting can only be changed while the CSP test is still passing. As soon as the test fails, it is too late to change

this setting and this command will fail.

This setting is persisted across power cycles.

Permissions

• This command requires the state selfTestPassed to be active (see Section 4.1).

• This command requires the user Admin to be logged in (see Section 4.1).

Command structure and parameters

Table 4.38: Command Data: Disable Export If CSP Test Fails

Field Size Offset Value Comment

Command 2 0 62 00

Data <empty>

Response

The response does not carry any data except of the SW. In case of success, the SW is [0x0000: Execution

successful], otherwise one of the following error codes is returned.

Error Codes

Table 4.39: Error Codes

0x1001: Unspecified, internal processing error

0x1005: Invalid command syntax

0x1054: Wrong state, self test must be run first

0x1055: Wrong state, passed self test required

0x100D: Wrong state, ongoing Data Import must be finished before this command is allowed

0x1016: Wrong state, ongoing Filtered Export must be finished before this command is allowed

0x100F: Not authorized

4.3. Maintenance Commands 36

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

4.4 Utility Commands

4.4.1 Fetch Command Response

Description

This command must be used if and only if the Result Code of a previously executed command is 0xFD. It will

then deliver the response of the previously issued command.

No further commands will be accepted by the TOE if the last command’s Result Code was 0xFD until Fetch

Command Response is issued. In that case, any other command will simply be ignored, which can be detected as

the Write Index in the command response is not increased then.

Note: If the command’s Result Code is 0xFF, then the actual response is already embedded in the currently read

response and does not need to be explicitly fetched. This command is only needed if the Result Code is 0xFD.

Permissions

This command does not require any permissions, as it is only a helper to deliver the actual response data of the

last issued command (which was already checked for necessary permissions during its execution).

Command structure and parameters

Table 4.40: Command Data: Fetch Command Response

Field Size Offset Value Comment

Command 2 0 83 00 Delivers Command Response

of previous command.

Data <empty>

Response

The response can be any of the other command’s responses.

Error Codes

If there is a response to fetch, this command contains the error code that was set by the previously executed

command.

If there is no response to fetch, i.e. this command gets executed when the last command’s Result Code is NOT

0xFD, one of the following errors will be returned.

Table 4.41: Error Codes

0x1015: Wrong state, no command response to fetch

4.4. Utility Commands 37

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

4.4.2 Get Last Transaction Response

Description

This command can be used to query the last transaction’s response.

Optionally, instead of returning the newest transaction response, the last transaction response that was created by

a specific client can be queried by providing a non zero-length Client ID to filter for.

This command is useful in case the ERS loses track of the last transaction result (e.g. because it crashes or loses

power). In that case, the ERS might not know if the last executed transaction was properly finalized or not and

can query the last transaction’s response with this command to sync its internal state with the TOE state.

Permissions

• This command requires the state CTSSInterfaceState to be active (see Section 4.1).

• This command requires the state TSEInitialized to be active (see Section 4.1).

Command structure and parameters

Table 4.42: Command Data: Get Last Transaction Response

Field Size Offset Value Comment

Command 2 0 84 00

Client ID Length 1 2 L1 Maximum length is 30 bytes.

Client ID L1 3 ASCII string representing the

unique serial number of the

client.

Use a zero length string to

ignore this parameter and re-

turn the newest transaction re-

sponse, no matter which client

created it.

Response

In case of success, the SW is [0x0000: Execution successful] and the response data fields are the same as for

command Data Import Finalize. Otherwise, one of the following error codes is returned.

Error Codes

Table 4.43: Error Codes

0x1001: Unspecified, internal processing error

0x1005: Invalid command syntax

0x1054: Wrong state, self test must be run first

0x1055: Wrong state, passed self test required

0x100D: Wrong state, ongoing Data Import must be finished before this command is allowed

0x1016: Wrong state, ongoing Filtered Export must be finished before this command is allowed

0x1053: Wrong state, active CTSS interface required

0x10FF: Wrong state, TSE not initialized

0x10FE: Wrong state, TSE decomissioned

0x100C: No last transaction to fetch

4.4. Utility Commands 38

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

4.4.3 List Started Transactions

Description

Lists all started transaction numbers in chunks of 62 transactions.

By providing a non-zero value for Transaction Offset, this amount of transaction numbers can be skipped from the

beginning of the returned list. For example, a value of 0 will return the first 62 started transaction numbers and a

value of 3 will return the 4th to 65th transaction numbers.

The Amount field in the response gives the amount of transaction numbers that are stored in the response. If this

is smaller than 62, then there are no further started transactions.

Optionally, only transactions belonging to a specific client can be queried by providing a non zero-length Client

ID to filter for. An unfinished transaction always belongs to the client that updated it most recently (or started the

transaction in case it was never updated at all). That means that if a transaction is started by client A and then

updated by client B, this command will return this specific transaction number only when filtering for transactions

belonging to client B (or when not filtering at all), not when filtering for transactions belonging to client A, because

client B was the last client that updated the transaction.

Permissions

• This command requires the state CTSSInterfaceState to be active (see Section 4.1).

• This command requires the state TSEInitialized to be active (see Section 4.1).

Command structure and parameters

Table 4.44: Command Data: List Started Transactions

Field Size Offset Value Comment

Command 2 0 85 00

Transaction Offset 4 2 The amount of started transac-

tions to skip.

Client ID Length 1 6 L1 Maximum length is 30 bytes.

Client ID L1 7 ASCII string representing the

unique serial number of the

client.

Only open transactions be-

longing to this client will be

returned. Use a zero length

string to return all open trans-

actions without further infor-

mation to which client the

transactions belong.

Response

In case of success, the SW is [0x0000: Execution successful] and the following additional data is returned,

otherwise an error is returned (see next section).

4.4. Utility Commands 39

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

Table 4.45: Response Data: List Started Transactions

Field Size Offset Value Comment

Amount 1 0 n Amount of transaction num-

bers in this response. 0 <= n <=

62. If this is < 62, then there

are no further started transac-

tions.

Transaction Num-

ber 1

8 1 Transaction number of 1st

started transaction.

Transaction Num-

ber 2

8 9 Transaction number of 2nd

started transaction.

.

Transaction Num-

ber 62

8 489 Transaction number of 62nd

started transaction.

Error Codes

Table 4.46: Error Codes

0x1001: Unspecified, internal processing error

0x1005: Invalid command syntax

0x1054: Wrong state, self test must be run first

0x1055: Wrong state, passed self test required

0x100D: Wrong state, ongoing Data Import must be finished before this command is allowed

0x1016: Wrong state, ongoing Filtered Export must be finished before this command is allowed

0x1053: Wrong state, active CTSS interface required

0x10FF: Wrong state, TSE not initialized

0x10FE: Wrong state, TSE decomissioned

4.4. Utility Commands 40

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

4.4.4 Get Log Message Certificate

Description

Returns the certificate that is associated with the signatures created by the TOE. This certificate can be used to

verify the signatures of all Log Messages created by the TOE.

The returned data is a single PEM file, which contains the complete certificate chain.

To verify a signature, only the leaf certificate (the first one in the PEM file) is required. However, in order to ensure

that the certificate whose key has been used stems from the correct PKI, the certificate chain shall be verified back

to the root of the PKI. Please refer to [AGD] for more details on how the root key of the PKI can be obtained.

Since the whole data might not fit into one response block, a Data Offset must be provided to select which parts

of the certificate file should be returned. In case this number is equal to or bigger than the stored certificate file,

the command will fail with [0x1007: Invalid parameter].

Permissions

• This command requires the state CTSSInterfaceState to be active (see Section 4.1).

• This command requires the state TSEInitialized to be active (see Section 4.1).

Command structure and parameters

Table 4.47: Command Data: Get Log Message Certificate

Field Size Offset Value Comment

Command 2 0 86 00

Data Offset 4 2 Selects from which offset the

certificate data should be re-

turned.

Big Endian.

Response

In case of success, the SW is [0x0000: Execution successful] and the following additional data is returned,

otherwise an error is returned (see next section).

Table 4.48: Response Data: Get Log Message Certificate

Field Size Offset Value Comment

Certificate Data

Length

2 0 R1 Length of the certificate data in

this response block.

If this is 0, the end of the cer-

tificate data has been reached.

Big Endian.

Certificate Data R1 2

4.4. Utility Commands 41

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

Error Codes

Table 4.49: Error Codes

0x1001: Unspecified, internal processing error

0x1005: Invalid command syntax

0x1054: Wrong state, self test must be run first

0x1055: Wrong state, passed self test required

0x100D: Wrong state, ongoing Data Import must be finished before this command is allowed

0x1016: Wrong state, ongoing Filtered Export must be finished before this command is allowed

0x1053: Wrong state, active CTSS interface required

0x10FF: Wrong state, TSE not initialized

0x10FE: Wrong state, TSE decomissioned

0x1007: Invalid parameter

4.4. Utility Commands 42

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

4.4.5 TSE Flash Information

Description

Provides low level information about the flash storage.

This command can be used to monitor the flash storage health and detect possible future defects before they occurr

and apply predective maintenance.

As a recommendation, the following simple guidance is provided:

1. If Uncorrectable ECC errors is different from 0, the TSE should be replaced.

2. If Percentage Remaining Spare Blocks All gets below 25%, the TSE should be replaced.

3. If the average erase count (calculated as Block Erases / (Flash Block Count * 256)) is bigger than 2940, the

TSE should be replaced.

Please note that based on the use case of the TSE, which does not involve many flash read or write operations

compared to other use cases, it is not expected that any of these conditions will ever be fulfilled during the lifetime

of the TSE.

The lowest wear level class (WL) and highest wear level class (WH) fields give the range of wear level classes

that are currently in use. Blocks that are not subject to the wear leveling are not counted. The wear level threshold

(T) gives the size of a wear level class, minus 1, in units of flash memory block erases. Thus, the number of block

erases that the flash blocks have seen is between WL*(T+1) and WH*(T+1)-1.

A spare block is a flash block that will used as a replacement for defect blocks.

Permissions

• This command requires the state selfTestRun to be active (see Section 4.1).

Command structure and parameters

Table 4.50: Command Data: TSE Flash Information

Field Size Offset Value Comment

Command 2 0 12 00

Response

In case of success, the SW is [0x0000: Execution successful] and the following additional data is returned,

otherwise an error is returned (see next section).

Note: Please note that some of the information that is returned by this command contains proprietary information

that needs detailed knowledge about the internal structure of the TSE for interpretation. If you should need more

detailled information about these data fields, please contact your Swissbit representative.

Table 4.51: Response Data: TSE Flash Information

Field Size Offset Value Comment

Proprietary 1 25 0 Manufacturer proprietary for-

mat.

Defect Blocks 2 26 Number of manufacturer

marked defect blocks.

Big Endian.

Initial Spare

Blocks Worst

2 28 Number of initial spare blocks

(worst interleave unit).

Big Endian.

Continued on next page

4.4. Utility Commands 43

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

Table 4.51 – continued from previous page

Field Size Offset Value Comment

Initial Spare

Blocks Sum

2 30 Number of initial spare blocks

(sum over all interleave units).

Big Endian.

Percentage Re-

maining Spare

Blocks Worst

1 32 Percentage of remaining spare

blocks (worst interleave unit).

Percentage Re-

maining Spare

Blocks All

1 33 Percentage of remaining spare

blocks (all interleave units).

Uncorrectable ECC

errors

2 34 Number of uncorrectable ECC

errors (not including startup

ECC errors).

Big Endian.

Correctable ECC

errors

4 36 Number of correctable ECC

errors (not including startup

ECC errors).

Big Endian.

Lowest wear level

class

2 40 Big Endian.

Highest wear level

class

2 42 Big Endian.

Wear level thresh-

old

2 44 Big Endian.

Block Erases 6 46 Total number of block erases.

Big Endian.

Flash Block Count 2 52 Number of flash blocks, in

units of 256 blocks.

Big Endian.

Erase Count Target 2 54 Maximum flash block erase

count target, in wear level class

units.

Big Endian.

Power on count 4 56 Big Endian.

Proprietary 2 100 60 Manufacturer proprietary for-

mat.

Error Codes

Table 4.52: Error Codes

0x1001: Unspecified, internal processing error

0x1005: Invalid command syntax

0x1054: Wrong state, self test must be run first

4.4. Utility Commands 44

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

4.5 Transaction Commands

[BSI-TR-03153] defines three types of operations for transactions – Start, Update, Finish. Since the Process

Data of a transaction might be bigger than the payload a single command can handle, each transaction type is

additionally split into three phases: Initialize, Transfer, Finalize. Together, these phases form a single Start-,

Update-, or FinishTransaction.

Fig. 4.1 shows how these phases are combined to form a single Start Transaction operation.

ERS

ERS

TSE_COMM.DAT

TSE_COMM.DAT

TSE_TAR.001

TSE_TAR.001

Dat a Im port Init ia lize

DataIm port Init ialize(Start , 0, client IdLength, client Id, processDataLength, processTypeLength, processType, 0)

t ransact ionPayloadSectorOffset = 20

Dat a Im port Transfer

calculate: TSE_TAR index = 1, offset = 10240

regular file system write of processData at offset 10240

Dat a Im port Finalize

DataIm portFinalize()

Transact ionNum ber = 3, SerialNum ber = xxx, LogTim e = yyy, Signature Counter = 12, Signature Length = aaa, Signature = bbb

Fig. 4.1: Sequence to perform a complete Start Transaction

During Initialize, the transaction is initiated by sending the command Data Import Initialize, which carries all the

metadata of the transaction (including whether the transaction is a Start, Update, or Finish). The response contains

a relative sector offset which must be used to write the Process Data of the transaction directly into the TSE Store

in the Transfer phase.

During Transfer, the Process Data of the transaction gets written consecutively to the TSE Store (which is made

writable for these sectors) starting at the sector offset given in the response of Data Import Initialize. For perfor-

mance reasons, this phase does not use commands, but writes the data to the TSE Store directly using regular file

write commands (see Section 4.5.2).

After all data has been sent, the transaction can be made persistent with the command Data Import Finalize, which

forms the Finalize phase of a transaction.

Note: [BSI-TR-03116-5] requires the ERS to update a started transaction (transaction with type Transaction

Start) at most MAX_UPDATE_DELAY seconds after the new Process Data has been created on the cash register.

The value of MAX_UPDATE_DELAY is announced in TSE Status. It is the responsibility of the cash register to

comply with this requirement, it is not enforced by the TOE in any way.

Note: A transaction is only persisted after Data Import Finalize was executed successfully. If the TSE loses

power after initializing a transaction but before finalizing it, it will be silently discarded on the next boot and must

be resubmitted.

Note: As long as the transaction has not yet been finalized with command Data Import Finalize, it can be

discarded with command Data Import Rollback.

High-Speed Mode

This mode behaves as described above. This is the preferred mode of operation, since it provides the easiest

interface and the highest speed.

4.5. Transaction Commands 45

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

Simple Mode

Some ERS have technical limitations that restrict them from writing data at high offsets. Specifically for these

ERS, the simple mode has been developed. This mode is activated per transaction by setting the corresponding

flag in Data Import Initialize.

In this mode, instead of the relative sector offset where the Process Data is to be written, the response of Data

Import Initialize always returns sector offset 0. All Process Data can then be written directly to the TSE Store at

offset 0 in a consecutive stream. Internally, the TOE copies the provided data to the correct position. While the

Data Import is in progress (i.e. it has not been finalized, yet), the Process Data can be read back from the same

addresses. After Data Import Finalize has been successfully executed, the transaction is persisted and its data will

only be readable from the real position in the TSE Store and will not be available anymore at offset 0.

Warning: This is not the preferred mode of operation and is much slower than the High-Speed Mode. This

interface is made available for POS terminals that cannot seek to huge offsets inside a file.

Warning: While doing a transaction using the Simple Mode, reading from the TSE Store at addresses that

are not part of the currently executed transaction is not allowed and will return blocks filled with zeroes. Use

High-Speed Mode if you need to do transactions and read data at the same time.

4.5. Transaction Commands 46

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

4.5.1 Data Import Initialize

Description

Initializes a Data Import. By using command 90 00, the Data Import will be performed in High-Speed mode

(preferred), with command 91 00 Simple Mode will be used.

The parameter Transaction Type selects whether this Data Import shall start, update, or finish a transaction. For

updating or finishing a transaction, the Transaction Number of a started transaction must be provided, otherwise

this value must be set to 0. If the provided Transaction Number is not in the started state, the command will fail

with [0x1008: Given transaction is not started].

The provided Client ID must have been previously registered (see Section 4.2.2), otherwise the operation will be

rejected.

All registered clients can update or finish transactions, even transactions that have been started by another client. In

case a transaction gets updated by another client as the last update (or the start of the transaction if the transaction

has never been updated before), ownership of the transaction gets transferred to the new client.

The actual Process Data is omitted from the command and will be supplied afterwards (see Section 4.5.2). How-

ever, its length must be provided as Process Data Length.

The allowed values for Process Type will be defined by Kassensicherungsverordnung. They are not evaluated by

the TOE and will be transparently copied into the generated Log Message.

The response field Transaction Payload Offset gives the sector offset in the TSE Store where the Process Data

must be written during phase Data Import Transfer afterwards.

Note: After issuing this command, all commands except of Fetch Command Response, Data Import Finalize,

and Data Import Rollback are not allowed and will fail with [0x100D: Wrong state, ongoing Data Import must

be finished before this command is allowed].

Permissions

• This command requires the state CTSSInterfaceState to be active (see Section 4.1).

• This command requires the state TSEInitialized to be active (see Section 4.1).

• The time must have been set before (see Section 4.3.5).

Command structure and parameters

Table 4.53: Command Data: Data Import Initialize

Field Size Offset Value Comment

Command 2 0 9x 00 x = 0: High-Speed Mode

Transactions

x = 1: Simple Mode Transac-

tions

Transaction Type 1 2 0: Transaction Start

1: Transaction Update

2: Transaction Finish

Client ID Length 1 3 L1 Maximum length is 30 bytes.

Client ID L1 4 ASCII string representing the

unique serial number of the

client.

Transaction Num-

ber

8 4 + L1 From previous response of

Transaction Start.

Only valid for Transaction Up-

date and Transaction Finish.

Must be 0 for Transaction

Start.

Continued on next page

4.5. Transaction Commands 47

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

Table 4.53 – continued from previous page

Field Size Offset Value Comment

Process Data

Length

8 12 + L1 Big Endian.

Process Type

Length

8 20 + L1 L2 Maximum length is 100 bytes.

Process Type L2 28 + L1 ASCII string. The string

must be representable as

an ASN.1 PrintableString,

which restricts the allowed

characters to the following:

A-Za-z0-9'()+,-./:=?

and the space character.

Additional Data

Length

8 28 + L1

+ L2

L3 Must be 0 in the current ver-

sion.

Additional Data L3 36 + L1

+ L2

Note: As described in the previous table, the current TOE does not support the handover of additional data (which

is an optional field in the definitions of [BSI-TR-03151]).

Response

In case of success, the SW is [0x0000: Execution successful] and the following additional data is returned,

otherwise an error is returned (see next section).

Table 4.54: Response Data: Data Import Initialize

Field Size Offset Value Comment

Transaction Pay-

load Sector Offset

8 0 Big Endian.

Error Codes

Table 4.55: Error Codes

0x1001: Unspecified, internal processing error

0x1005: Invalid command syntax

0x1054: Wrong state, self test must be run first

0x1055: Wrong state, passed self test required

0x100D: Wrong state, ongoing Data Import must be finished before this command is allowed

0x1016: Wrong state, ongoing Filtered Export must be finished before this command is allowed

0x1053: Wrong state, active CTSS interface required

0x10FF: Wrong state, TSE not initialized

0x10FE: Wrong state, TSE decomissioned

0x1002: Time not set

0x100E: Signatures exceeded

0x1007: Invalid parameter

0x1011: Client not registered

0x1008: Given transaction is not started

0x1009: Maximum parallel transactions reached

0x1017: Operation failed, not enough remaining capacity in TSE Store

4.5. Transaction Commands 48

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

4.5.2 Data Import Transfer

Description

After successfully initializing the transaction, its payload (Process Data) must be written directly into the TSE

Store at sector offset Transaction Payload Sector Offset. The corresponding range of sectors will be made writable

by the TOE during transaction processing.

The TSE Store is a single continously allocated storage space. The Transaction Payload Sector Offset is the relative

sector offset into this area. If the TSE is used in RAW access mode, the transaction data can thus simply be written

with standard file write commands at the relative sector offset plus the offset of the TSE Store itself to the raw

block device (see Section 5.1).

When using the TSE through the file system, the TSE_TAR.xxx files allow to write to the TSE Store (which

is split into multiple smaller files because of file system limitations). To transfer the data to the TSE, it can be

written to these files with regular file operations. For example, a sector offset of 20 means that the data must be

written into file TSE_TAR.001 at offset 10240 (20*512), a sector offset of 2097252 means the data must be

written into file TSE_TAR.002 at offset 51200 (100*512), because TSE_TAR.001 can only fit 1 GB of data

and offset 2097252 is bigger than 1 GB. The index of the file to use for transferring the data can be calculated with

(Transaction Payload Sector Offset / 2097152) + 1. The offset into this file is calculated by Transaction Payload

Sector Offset modulo 2097152. Care must be taken if the transaction would cross two TSE_TAR files. In that case,

the transaction data must be split into two parts. The first one must be sent to the file TSE_TAR.n starting at the

calculated offset, but only up to reaching the 1 GB file size limit, and the second one to TSE_TAR.n+1 starting

at offset 0. The transaction data will be part of the same transaction in the end as the TSE Store is a continous

storage space internally.

While the Data Import is in progress (i.e. it has not been finalized, yet), the Process Data can be read back from

the same addresses. After Data Import Finalize has been successfully executed, the transaction is persisted and

its data will not be readable from the same addresses anymore, because it will be copied into the generated Log

Message, which has a different layout.

If no Data Import has been initialized, all data that is written to the TSE Store will be discarded and will not be

stored.

Note: Since this phase does not use commands, there are no response or return values available. Errors will be

returned during Data Import Finalize.

4.5. Transaction Commands 49

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

4.5.3 Data Import Finalize

Description

After the TSE has received Process Data Length bytes as announced during Data Import Initialize, the transaction

can be finalized, which will generate a signed Log Message of the transaction.

Please note that after calling this command, the data that has been sent in Section 4.5.2 will not be readable again

from the same addresses, because it will be copied into a Log Message.

Permissions

• This command requires the state CTSSInterfaceState to be active (see Section 4.1).

• This command requires the state TSEInitialized to be active (see Section 4.1).

• The time must have been set before (see Section 4.3.5).

Command structure and parameters

Table 4.56: Command Data: Data Import Finalize

Field Size Offset Value Comment

Command 2 0 95 00

Data <empty>

Response

In case of success, the SW is [0x0000: Execution successful] and the following additional data is returned,

otherwise an error is returned (see next section).

Table 4.57: Response Data: Data Import Finalize

Field Size Offset Value Comment

Transaction Num-

ber

8 0 For Transaction Start: the

newly assigned transaction

number.

For other types: the same

transaction number that was

used in the Initialize step.

Serial Number 32 8 Serial Number of the recording

device. This is a hash over the

public key / certificate of the

Smart Card.

Log Time 8 40 Timestamp as seconds since

Unix Epoch. The timestamp

will be interpreted as an un-

signed number, which means

only dates after 1970 are sup-

ported.

Big Endian.

Signature Counter 8 48

Signature Length 8 56 R1

Signature R1 64

4.5. Transaction Commands 50

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

Error Codes

Table 4.58: Error Codes

0x1001: Unspecified, internal processing error

0x1005: Invalid command syntax

0x1054: Wrong state, self test must be run first

0x1055: Wrong state, passed self test required

0x1016: Wrong state, ongoing Filtered Export must be finished before this command is allowed

0x1053: Wrong state, active CTSS interface required

0x10FF: Wrong state, TSE not initialized

0x10FE: Wrong state, TSE decomissioned

0x1002: Time not set

0x1004: No transaction in progress

0x1006: Not enough data written during transaction

0x100A: Certificate expired

0xFF00: Signature creation error

4.5. Transaction Commands 51

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

4.5.4 Data Import Rollback

Description

In case there are any errors on the host while performing a Data Import (e.g. the host application crashes), host

and TOE might go out of sync and the import cannot be completed successfully.

In that case, the import can be rolled back, which clears all pending data from the TSE Store and allows a new

import to be started. The TOE will behave as if Data Import Initialize was never called.

Rolling back a Data Import is only possible before the Log Messages has been generated and signed during Data

Import Finalize. Afterwards, the Data Import was already persisted and is thus not allowed to be rolled back.

If there is no Data Import in progress while calling this command, it will still return with [0x0000: Execution

successful], but have no effect.

Permissions

• This command requires the state CTSSInterfaceState to be active (see Section 4.1).

• This command requires the state TSEInitialized to be active (see Section 4.1).

Command structure and parameters

Table 4.59: Command Data: Transaction Rollback

Field Size Offset Value Comment

Command 2 0 94 00

Data <empty>

Response

The response does not carry any data except of the SW. In case of success, the SW is [0x0000: Execution

successful], otherwise one of the following error codes is returned.

Error Codes

Table 4.60: Error Codes

0x1001: Unspecified, internal processing error

0x1005: Invalid command syntax

0x1054: Wrong state, self test must be run first

0x1055: Wrong state, passed self test required

0x1016: Wrong state, ongoing Filtered Export must be finished before this command is allowed

0x1053: Wrong state, active CTSS interface required

0x10FF: Wrong state, TSE not initialized

0x10FE: Wrong state, TSE decomissioned

4.5. Transaction Commands 52

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

4.6 Export Commands

Log Messages of the TOE can be exported in two ways: filtered or unfiltered.

Doing a filtered export is an expensive operation that takes a very long time to complete. Therefore, it is recom-

mended to always use a complete, unfiltered export (see Section 3.4) and delete the exported data afterwards (see

Section 4.6.4) to effectively create an incremental export that runs at the fastest speed.

A filtered export is performed by first supplying the requested filter (see Start Filtered Export) and then repeatedly

polling the filtered data with Poll Filtered Export until the export is complete. A filtered export can be aborted at

any time with Abort Filtered Export and will automatically be aborted on power loss.

4.6.1 Start Filtered Export

Description

This command starts a filtered export of stored Log Messages by supplying a filter. The Log Messages are

collected in the background and can be fetched by repeatedly calling Poll Filtered Export.

The exported Log Messages can be filtered based on their timestamp, transaction number, and the client that

created the transaction. Filter criteria can be combined as defined in [BSI-TR-03153]. It is possible to filter based

on

• Transaction Number and Client-ID

• StartTransactionNumber to EndTransactionNumber and Client-ID

• TimeStampStart to TimeStampEnd and Client-ID

All System and Audit Log Messages that were created between the first included Log Message belonging to a

transaction start and the last included Log Message belonging to a transaction finish, will also be included in the

exported data.

If the supplied filter is inconsistent, i.e. Timestamp End is lower than Timestamp Start or Transaction Number End

is lower than Transaction Number Start, this command will fail with [0x1007: Invalid parameter].

Note: After issuing this command, all commands except of Fetch Command Response, Poll Filtered Export, and

Abort Filtered Export are not allowed and will fail with [0x1016: Wrong state, ongoing Filtered Export must be

finished before this command is allowed]. This restriction does not apply to an unfiltered export.

Permissions

• This command requires the state CTSSInterfaceState to be active (see Section 4.1).

• This command requires the state TSEInitialized to be active (see Section 4.1).

Command structure and parameters

Table 4.61: Command Data: Start Filtered Export

Field Size Offset Value Comment

Command 2 0 A0 00

Timestamp Start 8 2 Timestamp as seconds since

Unix Epoch. The timestamp

will be interpreted as an un-

signed number, which means

only dates after 1970 are sup-

ported. If 0, it will be treated

as the beginning of time.

Big Endian.

Continued on next page

4.6. Export Commands 53

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

Table 4.61 – continued from previous page

Field Size Offset Value Comment

Timestamp End 8 10 Timestamp as seconds since

Unix Epoch. The times-

tamp will be interpreted

as an unsigned number,

which means only dates af-

ter 1970 are supported. If

0xFFFFFFFFFFFFFFFF, it

will be treated as infinity.

Big Endian.

Transaction Num-

ber Start

8 18 Start transaction number (in-

clusive).

Big Endian.

Transaction Num-

ber End

8 26 End transaction num-

ber (inclusive). If

0xFFFFFFFFFFFFFFFF, all

transactions will be returned.

If this is the same as Trans-

action Number Start, only

transaction data belonging to

this single transaction will be

exported.

Big Endian.

Client ID Length 1 34 L1 Maximum length is 30 bytes.

Client ID L1 35 ASCII string representing the

unique serial number of the

client. Use a zero length string

to not filter for a client ID.

Response

The response does not carry any data except of the SW. In case of success, the SW is [0x0000: Execution

successful], otherwise one of the following error codes is returned.

Error Codes

Table 4.62: Error Codes

0x1001: Unspecified, internal processing error

0x1005: Invalid command syntax

0x1054: Wrong state, self test must be run first

0x1055: Wrong state, passed self test required

0x100D: Wrong state, ongoing Data Import must be finished before this command is allowed

0x1016: Wrong state, ongoing Filtered Export must be finished before this command is allowed

0x1053: Wrong state, active CTSS interface required

0x10FF: Wrong state, TSE not initialized

0x1007: Invalid parameter

4.6. Export Commands 54

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

4.6.2 Poll Filtered Export

Description

After a filtered export has been initiated with Start Filtered Export, the actual data must be queried in small chunks

by repeatedly calling this command. The returned data must be concatenated to form the final TAR archive.

The export is complete if this command returns a zero length chunk.

A filtered export is a very time consuming operation. The TSE will collect the data that matches the filter in the

background and waits for the ERS to collect them. If the TOE did not find new matching data since the last call,

the command will fail with [0x2002: Filtered Export: no new data, keep polling]. In that case, the ERS should

repeat the command after a short delay to give the TOE some time to search for new data.

A filtered export either completely finishes by returning a zero length chunk, fails because of an error, or must

be aborted with Abort Filtered Export. If the TSE loses power during a filtered export, the export will be aborted

automatically and must be restarted from scratch.

If no data could be found that matches the supplied filter, this command will fail with [0x2003: Filtered Export:

no matching entries, export would be empty].

Permissions

• This command requires the state CTSSInterfaceState to be active (see Section 4.1).

• This command requires the state TSEInitialized to be active (see Section 4.1).

Command structure and parameters

Table 4.63: Command Data: Poll Filtered Export

Field Size Offset Value Comment

Command 2 0 A1 00

Response

In case of success, the SW is [0x0000: Execution successful] and the following additional data is returned,

otherwise an error is returned (see next section).

Table 4.64: Response Data: Poll Filtered Export

Field Size Offset Value Comment

Export Data

Length

2 0 R1 Length of the exported data in

this response block.

If this is 0, the end of the ex-

ported data has been reached

and the export is complete.

Big Endian.

Export Data R1 2

4.6. Export Commands 55

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

Error Codes

Table 4.65: Error Codes

0x1001: Unspecified, internal processing error

0x1005: Invalid command syntax

0x1054: Wrong state, self test must be run first

0x1055: Wrong state, passed self test required

0x100D: Wrong state, ongoing Data Import must be finished before this command is allowed

0x1053: Wrong state, active CTSS interface required

0x10FF: Wrong state, TSE not initialized

0x2001: Filtered Export: no export in progress

0x2002: Filtered Export: no new data, keep polling

0x2003: Filtered Export: no matching entries, export would be empty

4.6. Export Commands 56

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

4.6.3 Abort Filtered Export

Description

Aborts a currently running filtered export. If no filtered export is in progress, the command also succeeds without

errors.

Permissions

• This command requires the state CTSSInterfaceState to be active (see Section 4.1).

• This command requires the state TSEInitialized to be active (see Section 4.1).

Command structure and parameters

Table 4.66: Command Data: Abort Filtered Export

Field Size Offset Value Comment

Command 2 0 A4 00

Response

The response does not carry any data except of the SW. In case of success, the SW is [0x0000: Execution

successful], otherwise one of the following error codes is returned.

Error Codes

Table 4.67: Error Codes

0x1001: Unspecified, internal processing error

0x1005: Invalid command syntax

0x1054: Wrong state, self test must be run first

0x1055: Wrong state, passed self test required

0x100D: Wrong state, ongoing Data Import must be finished before this command is allowed

0x1053: Wrong state, active CTSS interface required

0x10FF: Wrong state, TSE not initialized

4.6. Export Commands 57

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

4.6.4 Delete Exported Data

Description

Deletes all data that has been successfully exported before.

This command requires a complete, unfiltered export and acknowledgement of the ERS (see Section 4.6.5) before

data can be deleted.

No new data must have been generated since the last export in order to successfully execute this command.

Please note that after the TSE Store has been filled with more than 3gb of data, the next deletion might take up

to 15 minutes, because the TSE runs an internal garbage collection to restore flash health and performance. This

limitation does not apply if the deletion is performed with a TSE Store that is not filled with so much data.

Permissions

• This command requires the state CTSSInterfaceState to be active (see Section 4.1).

• This command requires the user Admin to be logged in (see Section 4.1).

• This command requires the state TSEInitialized to be active (see Section 4.1).

Command structure and parameters

Table 4.68: Command Data: Delete Exported Data

Field Size Offset Value Comment

Command 2 0 A2 00

Response

The response does not carry any data except of the SW. In case of success, the SW is [0x0000: Execution

successful], otherwise one of the following error codes is returned.

Error Codes

Table 4.69: Error Codes

0x1001: Unspecified, internal processing error

0x1005: Invalid command syntax

0x1054: Wrong state, self test must be run first

0x1055: Wrong state, passed self test required

0x100D: Wrong state, ongoing Data Import must be finished before this command is allowed

0x1016: Wrong state, ongoing Filtered Export must be finished before this command is allowed

0x1053: Wrong state, active CTSS interface required

0x10FF: Wrong state, TSE not initialized

0x10FE: Wrong state, TSE decomissioned

0x100F: Not authorized

0x1012: Failed to delete, data not completely exported

4.6. Export Commands 58

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

4.6.5 Acknowledge Export

Description

After doing an unfiltered export, the host application can notify the TOE that it successfully received the exported

data in order to allow execution of the Delete Exported Data command.

Permissions

• This command requires the state CTSSInterfaceState to be active (see Section 4.1).

• This command requires the state TSEInitialized to be active (see Section 4.1).

Command structure and parameters

Table 4.70: Command Data: Acknowledge Export

Field Size Offset Value Comment

Command 2 0 A3 00

Export Size 8 2 Size of successfully received

export data in bytes.

Big Endian.

Response

The response does not carry any data except of the SW. In case of success, the SW is [0x0000: Execution

successful], otherwise one of the following error codes is returned.

Error Codes

Table 4.71: Error Codes

0x1001: Unspecified, internal processing error

0x1005: Invalid command syntax

0x1054: Wrong state, self test must be run first

0x1055: Wrong state, passed self test required

0x100D: Wrong state, ongoing Data Import must be finished before this command is allowed

0x1016: Wrong state, ongoing Filtered Export must be finished before this command is allowed

0x1053: Wrong state, active CTSS interface required

0x10FF: Wrong state, TSE not initialized

0x10FE: Wrong state, TSE decomissioned

4.6. Export Commands 59

CHAPTER

FIVE

APPLICATION NOTES

This chapter contains information that did not fit into the previous chapters. It is meant to be a loose collection of

information that is important for the use of the TOE.

5.1 Usage of TSE in RAW access

For simple architectures and embedded applications without a file system implementation the host can access the

special TOE files in raw mode, which means it uses the sector offsets of the files and directly reads from and writes

to these sectors on the raw device instead of going through the file system.

How RAW access is implemented on the client architecture goes beyond the scope of this document. As an

example: if one would implement RAW access on a Linux system, it would mean to write to or read from the

block device (e.g. /dev/sdc) directly instead of interacting with the mounted file system.

The logical block addresses (LBAs) of the TOE special files are announced in sector 8 of the TOE device:

Table 5.1: RAW Access Info Table

Field Size Offset Comment

Logical Sector address of

TSE_INFO.DAT

4 0 LBA of TSE_INFO.DAT

Logical Sector address of

TSE_COMM.DAT

4 4 LBA of TSE_COMM.DAT

Logical Sector address of

TSE Store begin

4 8 LBA of TSE Store begin

RFU 500 12 RFU (all 00)

5.2 Formatting the TSE

The security mechanism inside the TOE requires a fixed partition structure. Therefore, formatting the TOE is

prevented and will fail.

Please note that while the partitioning and format of the partition is protected, there are some critical structures

on the file system that must be writable by the host in order to allow creating new files. That means that if these

structures are overwritten with invalid data (e.g. by overwriting the whole device with zeros), the TOE might not

be mountable anymore on the host system.

While this temporarily prevents accessing the TOE, this situation can be fixed by the host by restoring the file

system structure. Swissbit provides a tool upon request to do this for Windows and Linux. After restoring the file

system structure, all previously stored transactions can be read again (i.e. there is no possibility for a permanent

loss of transaction data), but files that were created in the freely writable user space might be lost.

60

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

5.3 Number of possible transactions and size of standard partition

The size of the TSE Store is fixed to 6.5 GB and suits approximately 3.5 million transactions each with 512 bytes

process data in average and 2 signatures applied - one at Transaction Start and one at Transaction Finish (i.e. each

transaction consists of roughly 4 blocks). To store more transactions, export the data and delete the TSE Store

afterwards (see Section 4.6.4).

5.4 Amount of possible signatures

Due to technical limitations the number of digital signatures is typically limited, but it is guaranteed to be at least

20 million signatures. Beyond this, it may still be possible to create further signatures. In case the internal limit of

signatures of the builtin security module has been reached the potential risk for a loss of data must be taken into

account by the user, since access to data might require the ability to perform signatures.

5.5 TSE full detection

The remaining number of possible transactions can be calculated by TSE Capacity – TSE Current Size (please

refer to TSE Status).

Please note that in case the TSE Store does not have enough free space to store the Log Message of an operation,

the command that triggers the Log Message will fail with [0x1017: Operation failed, not enough remaining

capacity in TSE Store]. However, the effect of the command will still be applied. For example, calling Login User

will fail, but the user will in fact be logged in afterwards. This is done to ensure that a user can still be logged

in even if the TSE Store is full, which is a requirement for actually being able to delete the stored data in order

to reclaim free space in the TSE Store. In that case the Log Message belonging to the operation will be lost and

there will be a gap in the signature counter of Log Messages if the TSE is later being brought back into a fully

operational state by deleting the stored data. Since error code [0x1017: Operation failed, not enough remaining

capacity in TSE Store] can be raised for both, successful and unsuccessful operations, it is advised to monitor the

remaining free space of the TSE Store and export and delete the stored data in case the remaining space gets low.

Data Imports that are too big to fit into the remaining space will simply be rejected before any signature is created

to make sure that no Log Message belonging to a transaction gets lost.

5.6 Host File System Caching Considerations

Reading the response in TSE_COMM.DAT may fail if file caching mechanisms apply. Please ensure the file

is opened while the file system cache is deactivated or bypassed. The read back worked if the data struc-

ture as described in Section 4 is retrieved, especially the Write Index in the response is increased per write on

TSE_COMM.DAT. By verifying the increment of the Write Index the host can verify that a write and respective

read of the response has happened.

A similar restriction applies when reading the stored transaction directly from the TOE as described in Section

3.4. Reading the data is only possible if the file system cache is deactivated, bypassed, or not populated yet, e.g.

because the TOE was just inserted into the host system and thus the file system cache of the device is empty.

5.7 Driver support for PC systems

For simple transactions on PC systems Swissbit provides an easy to use library for Linux and Windows. Please

contact your sales representative for further information.

5.8 Initial PUK and PINs

Each TSE will have a different value for the Admin PIN and PUK and the TimeAdmin PIN. The initial values

are derived from the TSE Serial Number (see TSE Status) and a customer (customer refer to the developer of the

ERS in this context) specific Seed and are then mapped to the ASCII characters ‘0’ - ‘9’ (i.e. they only consist of

5.3. Number of possible transactions and size of standard partition 61

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

digits). The character set of new PINs and PUKs are not restricted, but it is recommended to stick to alphanumeric

values to ensure they can be entered on all used systems without issues.

The algorithm used to derive the initial values is implemented as part of the TSE SDK and works like this:

1. Input: tseSerialNumber, seed

2. Calculate SHA-256 of concatenated seed and tseSerialNumber: hash = SHA256(seed |

tseSerialNumber)

3. Take the first 24 bytes of hash and split it into three 64 bit unsigned integers (parsed using Big Endian

notation).

4. For the Admin PUK, take the first number and take it modulo by 1.000.000. Take the remainder as PUK.

5. For the Admin PIN, take the second number and take it modulo by 100.000. Take the remainder as PIN.

6. For the TimeAdmin PIN, take the third number and take it modulo by 100.000. Take the remainder as PIN.

7. The PUK will now be a number between 0 and 999.999 and the PINs will be numbers between 0 and 99.999.

8. To form the final values, convert the numbers to string while padding them to the required length of 6 (for

PUK) and 5 (for PINs) with ASCII ‘0’s.

Note: The seed for development samples is SwissbitSwissbit.

5.9 TSE Setup

Figure Fig. 5.1 (which is identical to Figure 4 in [AGD]) shows all necessary steps that bring the TOE from the

clean factory state into a usable state. Afterwards, the time can be synchronized and the TOE is ready to receive

transactions.

It is not necessary to register each ERS at the TOE before initializing it. Clients can be registered later at any time

as long as the Admin user is logged in.

5.10 TSE Usage for Transactions

Fig. 5.2 shows how to use the TOE in daily operation to perform transactions, starting from powering on the TOE.

5.11 Exceptional Error Cases

In case the TOE encounters an invalid state (while not explicitly executing the self test as part of command Run

Self Test), it will reboot itself. This is done to ensure the TOE re-enters a valid state. The ERS can detect this

situation by checking if the Write Index of the command response was reset to 0 (see Section 3.5).

These exceptional error cases are not expected to be run into and are most likely indicating a hardware fault. All

regular error cases are handled by error codes as outlined in the previous chapters.

5.9. TSE Setup 62

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

user

user

ERS

ERS

TSE

TSE

Startup

runSelfTest(clientId)

failed (client not registered)

Changing User Credentials

read TSE Serial Number

tseSerial = xxx

deriveInitialPinPuk(tseSerial, seed)

Prompt for new Admin PUK

adminPuk = '123456'

changePuk(initialAdminPuk, adminPuk)

Prompt for new Admin PIN

adminPin = '12345'

login(admin, initialAdminPin)

changePin(admin, initialAdminPin, adminPin)

Prompt for new TimeAdmin PIN

timeAdminPin = '98765'

login(timeAdmin, initialTimeAdminPin)

changePin(timeAdmin, initialTimeAdminPin, timeAdminPin)

Registering ERS at TSE

loop [for each ERS]

registerClient(ersSerial)

runSelfTest(ersSerial)

success

Initializing

enableCTSSInterface

initialize

Regular Use

updateTime

transaction 1

transaction 2

transaction 3

Fig. 5.1: TSE Setup5.11. Exceptional Error Cases 63

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

ERS

ERS

TSE

TSE

St art up

runselfTest (client Id)

success

login(t im eAdm in)

updateTim e

Regular Use

t ransact ion

t ransact ion

t ransact ion

updateTim e

t ransact ion

t ransact ion

updateTim e

t ransact ion

t ransact ion

Fig. 5.2: TOE Usage for Transactions

5.11. Exceptional Error Cases 64

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

5.12 Mapping of SFR

In order to ensure that all SFR from [ST] are sufficiently covered by commands of the interface of the TOE, the

following table summarizes the mapping.

Table 5.2: Mapping of SFR to commands

SFR command

enforcing

command

supporting

Comment

FDP_ACC.1/LM

• all

com-

mands

as every command of the TOE implements access

control, one can argue that all commands support

this SFR.

FDP_ACC.1/UCP

• TSE

Firmware

Update

Trans-

fer

• TSE

Firmware

Update

Apply

The access control policy for the update of the

code package is implemented by TSE Firmware

Update Transfer and TSE Firmware Update Ap-

ply.

FDP_ACF.1/LM all commands as every com-

mand of the

TOE imple-

ments access

control, one

can argue that

all commands

support this

SFR. The list

of rules that

are defined in

FDP_ACF.1.2,2,3/LM

is specifically

implemented

by Data Im-

port Initialize,

Data Import

Finalize,

Start Filtered

Export, Ac-

knowledge

Export, Up-

date Time,

Delete Ex-

ported Data,

Register

Client and the

File Based

Interface

The access

Continued on next page

5.12. Mapping of SFR 65

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

Table 5.2 – continued from previous page

SFR command

enforcing

command

supporting

Comment

FDP_ACF.1/UCP

• TSE

Firmware

Update

Trans-

fer

• TSE

Firmware

Update

Apply

The functionality for firmware update is exposed

via the commands TSE Firmware Update Trans-

fer and TSE Firmware Update Apply.

FDP_ETC.2/DTBS The export of data to the CSP is a purely internal

functionality of the TOE. For this reason, there

are no commands that implement this functional-

ity.

FDP_ETC.2/LM

• File

Based

Inter-

face

• Start

Filtered

Export

• Poll

Filtered

Export

• Delete

Ex-

ported

Data

•

Acknowledge

Export

The functionality for export of log messages as

described in FDP_ETC.2/LM is implemented by

the commands that provide the functionality to

export the log messages. Also the file based in-

terface is an implementation of this functionality.

FDP_ITC.2/TD

• Data

Import

Initial-

ize

• Data

Import

Trans-

fer

• Data

Import

Final-

ize

•

Register

Client

The functionality as required by FDP_ITC.2/TD

is implemented by the commands that can be used

to store transactions with the TOE. Also, the com-

mand to register a client supports this functional-

ity as it is used to submit the information of the

allowed ERS to the TOE.

Continued on next page

5.12. Mapping of SFR 66

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

Table 5.2 – continued from previous page

SFR command

enforcing

command

supporting

Comment

FDP_ITC.2/TSS

• Data

Import

Initial-

ize

• Data

Import

Trans-

fer

• Data

Import

Final-

ize

The functionality described in FDP_ITC.2/TSS is

an internal functionality that concerns the inter-

face between the TOE and the CSP and is not di-

rectly exposed to the user. For this reason, it is not

directly exposed via a command. One can how-

ever argue that the functionality to start, update

and finish transactions are an implementation of

this functionality.

FDP_ITC.2/UCP

• TSE

Firmware

Update

Trans-

fer

• TSE

Firmware

Update

Apply

The functionality for firmware update is exposed

via the commands TSE Firmware Update Trans-

fer and TSE Firmware Update Apply.

FDP_RIP.1/UCP

• TSE

Firmware

Update

Trans-

fer

• TSE

Firmware

Update

Apply

The functionality as required by FDP_RIP.1/UCP

is implemented by commands commands TSE

Firmware Update Transfer and TSE Firmware

Update Apply.

FIA_AFL.1

• Login

User

•

Unblock

User

The commands Login User and Unblock User

implement the authentication failure handling as

required by FIA_AFL.1.

FIA_ATD.1

• Login

User

The attributes Identity, Authentication Reference

Data and Role that have to be maintained for the

roles Admin and Time Admin are implemented

by the command Login User. The attributes Se-

rialNumber belonging to the ERS and PACE-PIN

belonging to the CSP are not exposed via an in-

terface.

Continued on next page

5.12. Mapping of SFR 67

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

Table 5.2 – continued from previous page

SFR command

enforcing

command

supporting

Comment

FIA_UAU.1

• Login

User

all commands While the actual authentication of a user is imple-

mented by the command Login User, each com-

mand of the TOE implements the functionality of

FIA_UAU.1 in so far that it ensures that the cor-

rect authentication state is existing.

FIA_UAU.5

• Login

User

all commands The password authentication that is required for

the Admin and Time Admin role is implemented

by the Login User command. Further, all com-

mands of the TOE enforce the correct authenti-

cation state. The successful PACE-Channel es-

tablishment for the CSP role and the provision of

valid ERS Serial Number for the CTSS Interface

role are only exposed in case of an error. For this

reason all commands are rated SFR-supporting

for this SFR.

FIA_UAU.6

• Login

User

The password authentication as described in Lo-

gin User only sets the status of the user to the next

reboot. This implements FIA_UAU.6.

FIA_UID.1

• Login

User

• Run

Self

Test

• The initial role of the user is assumed to be

unidentified user

• The command Run Self Test is the only

command that can be run without user

identification

• other roles are associated with the user only

after successful authentication via Login

User

FIA_USB.1

• Login

User

• Run

Self

Test

• The initial role of the user is assumed to be

unidentified user

• The command Run Self Test is the only

command that can be run without user

identification

• The other roles are associated with the user

after successful authentication via Login

User

FMT_MOF.1

•

Register

Client

The rules as described in FMT_MOF.1 are en-

forced as follows: - (1) Enabling and disabling of

password authentication is not implemented and

does not require any command. - (2) The TOE

does no provide a method to determine the life

time limit of open transactions. - (3) The serial

number that can be set by the Administrator by

the use of the command Register Client is used

during self testing. This is the only information

that can be configured for the self test - (4) The

TOE does not allow to change any other informa-

tion - (5) The TOE does not allow to change any

other information

Continued on next page

5.12. Mapping of SFR 68

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

Table 5.2 – continued from previous page

SFR command

enforcing

command

supporting

Comment

FMT_MSA.1 The TOE does not offer any functionality

to change the default values as described in

FMT_MSA.1 and implements the SFR this way.

For this reason, no commands are used to imple-

ment this SFR.

FMT_MSA.2

•

Register

Client

•

Deregister

Client

The TOE implements the functionality as re-

quired by FMT_MSA.2. However, the transac-

tion counter is stored internally and can (for good

reason) not be administered. The only function-

ality that is visible at the TSFI is the definition of

accepted values for the serial number of the ERS

as require by FMT_MSA.2.

FMT_MSA.3

• none • none

As described in the [ST], there is no inter-

face to configure default values for security at-

tributes, which implements FMT_MSA.3.2. By

sticking to the provided default values from

[PP-SMAERS], restrictive choices were made to

implement FMT_MSA.3.1.

FMT_MSA.4

• Data

Import

Initial-

ize

• Data

Import

Trans-

fer

• Data

Import

Final-

ize

The attributes described in FMT_MSA.4 are kept

only internally within the TOE. For this reason,

no command can be mapped here. One could ar-

gue that the commands to start, update and finish

transactions implement this SFR.

FMT_MTD.1/AD

• Change

PUK

• Change

PIN

The role Administrator can change the Adminis-

trator PIN, the role TimeAdmin can change the

TimeAdmin PIN. In addition, Administrator can

change the Administrator PIN, TimeAdmin PIN

and PUK using the PUK as credential.

FMT_MTD.3/PW

• Change

PUK

• Change

PIN

The initial PINs are derived from the TOEs se-

rial number and stored at production time. They

have to be changed after the first login. The file

TSE_INFO.DAT in the file system indicates, if

the PINs were already changed.

FMT_SMF.1

•

Register

Client

•

Deregister

Client

The management of acceptable ERS Serial Num-

bers is implemented in command Register Client.

Please refer directly to the description of the other

SFRs in this table for the rest of this SFR.

Continued on next page

5.12. Mapping of SFR 69

Functional Specification Swissbit TSE SMAERS Firmware, Version 1.2.11

Table 5.2 – continued from previous page

SFR command

enforcing

command

supporting

Comment

FMT_SMR.1 Login User

•

Unblock

User

• Logout

User

•

Unblock

User

• Change

PUK

• Change

PIN

FPT_TDC.1 Export Com-

mands

With respect to the formats of im- and exported

data, the TOE is conformant to the required spec-

ifications.

FPT_FLS.1 none Run Self Test The commands that expose the tests support this

command but the functionality that enters the se-

cure state is purely internal.

FPT_TEE.1 Run Self Test Self Test Commands implements the self test as

required by FPT_TEE.1

FPT_TST.1 Run Self Test none

FCS_CKM.1 The functionality from this SFR addresses the

Trusted Channel between the TOE and the CSP.

This functionality is not described in this docu-

ment.

FCS_CKM.4 The functionality from this SFR addresses the

Trusted Channel between the TOE and the CSP.

This functionality is not described in this docu-

ment.

FCS_COP.1 The functionality from this SFR addresses the

Trusted Channel between the TOE and the CSP.

This functionality is not described in this docu-

ment.

FCS_RNG.1 The functionality from this SFR addresses the

Trusted Channel between the TOE and the CSP.

This functionality is not described in this docu-

ment.

FIA_API.1 The functionality from this SFR addresses the

Trusted Channel between the TOE and the CSP.

This functionality is not described in this docu-

ment.

FIA_UAU.5/TC The functionality from this SFR addresses the

Trusted Channel between the TOE and the CSP.

This functionality is not described in this docu-

ment.

FIA_ITC.1/TC The functionality from this SFR addresses the

Trusted Channel between the TOE and the CSP.

This functionality is not described in this docu-

ment.

5.12. Mapping of SFR 70

BIBLIOGRAPHY

[FAT32] Microsoft Extensible Firmware Initiative FAT32 File System Specification, Version 1.03, 2000

[USB-Spec] Universal Serial Bus Specification , Revision 2.0, April 2000

[SD-Spec] SD Specifications, Part 1, Physical Layer - simplified Specification, Version 5.00, August 2010

[BSI-TR-03153] Technische Richtlinie BSI TR-03153 Technische Sicherheitseinrichtung für elektronische

Aufzeichnungssysteme, TR-03153, Version 1.0.1

[BSI-TR-03151] Technical Guideline BSI TR-03151 Secure Element API (SE API), TR-03151, Version 1.0.1

[BSI-TR-03111] Technical Guideline BSI TR-03111 Elliptic Curve Cryptography, TR-03111, Version 2.10

[PP-SMAERS] Common Criteria Protection, Profile Security Module Application for Electronic Record-keeping

Systems, Aktuell in Version 0.7.2

[PPC-CSP-TS-Au] Common Criteria Protection Profile Configuration, Cryptographic Service Provider - Time

Stamp Service and Audit, Version 0.9.5

[AGD] swissbit TSE - Guidance Manual, Version 1.0.0

[ST] Security Target Swissbit TSE SMAERS

71

	Introduction
	Overview

	Physical Interface
	File Based Interface
	Working principle of the TOE
	TSE Status
	Reading TSE Data
	Exporting Data by reading from TSE_TAR.xxx
	Sending commands to the TOE

	Commands
	User Authentication Commands
	Login User
	Logout User
	Unblock User
	Change PUK
	Change PIN

	Self Test Commands
	Run Self Test
	Register Client
	Deregister Client
	List Registered Clients

	Maintenance Commands
	Enable CTSS Interface
	Disable CTSS Interface
	Initialize TSE
	Decommission TSE
	Update Time
	TSE Firmware Update Transfer
	TSE Firmware Update Apply
	Enable Export If CSP Test Fails
	Disable Export If CSP Test Fails

	Utility Commands
	Fetch Command Response
	Get Last Transaction Response
	List Started Transactions
	Get Log Message Certificate
	TSE Flash Information

	Transaction Commands
	Data Import Initialize
	Data Import Transfer
	Data Import Finalize
	Data Import Rollback

	Export Commands
	Start Filtered Export
	Poll Filtered Export
	Abort Filtered Export
	Delete Exported Data
	Acknowledge Export

	Application Notes
	Usage of TSE in RAW access
	Formatting the TSE
	Number of possible transactions and size of standard partition
	Amount of possible signatures
	TSE full detection
	Host File System Caching Considerations
	Driver support for PC systems
	Initial PUK and PINs
	TSE Setup
	TSE Usage for Transactions
	Exceptional Error Cases
	Mapping of SFR

	Bibliography

